Cargando…
Investigating the temporal pattern of neuroimaging-based brain age estimation as a biomarker for Alzheimer’s Disease related neurodegeneration
Neuroimaging-based brain-age estimation via machine learning has emerged as an important new approach for studying brain aging. The difference between one’s estimated brain age and chronological age, the brain age gap (BAG), has been proposed as an Alzheimer’s Disease (AD) biomarker. However, most p...
Autores principales: | Taylor, Alexei, Zhang, Fengqing, Niu, Xin, Heywood, Ashley, Stocks, Jane, Feng, Gangyi, Popuri, Karteek, Beg, Mirza Faisal, Wang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995621/ https://www.ncbi.nlm.nih.gov/pubmed/36089183 http://dx.doi.org/10.1016/j.neuroimage.2022.119621 |
Ejemplares similares
-
Network‐wise concordance of multimodal neuroimaging features across the Alzheimer's disease continuum
por: Stocks, Jane, et al.
Publicado: (2022) -
Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer's disease into dementia score: Independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases
por: Popuri, Karteek, et al.
Publicado: (2020) -
Quantifying brain metabolism from FDG‐PET images into a probability of Alzheimer's dementia score
por: Yee, Evangeline, et al.
Publicado: (2019) -
Grant Report on PREDICT-ADFTD: Multimodal Imaging Prediction of AD/FTD and Differential Diagnosis
por: Wang, Lei, et al.
Publicado: (2019) -
Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer’s Disease using structural MR and FDG-PET images
por: Lu, Donghuan, et al.
Publicado: (2018)