Cargando…
A systematic comparison of deep learning methods for EEG time series analysis
Analyzing time series data like EEG or MEG is challenging due to noisy, high-dimensional, and patient-specific signals. Deep learning methods have been demonstrated to be superior in analyzing time series data compared to shallow learning methods which utilize handcrafted and often subjective featur...
Autores principales: | Walther, Dominik, Viehweg, Johannes, Haueisen, Jens, Mäder, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995756/ https://www.ncbi.nlm.nih.gov/pubmed/36911074 http://dx.doi.org/10.3389/fninf.2023.1067095 |
Ejemplares similares
-
Empirical comparison of deep learning methods for EEG decoding
por: de Oliveira, Iago Henrique, et al.
Publicado: (2023) -
Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications
por: Stone, David B., et al.
Publicado: (2018) -
A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings
por: Tamburro, Gabriella, et al.
Publicado: (2018) -
Changes in scalp potentials and spatial smoothing effects of inclusion of dura layer in human head models for EEG simulations
por: Ramon, Ceon, et al.
Publicado: (2014) -
Coupled CP Decomposition of Simultaneous MEG-EEG Signals for Differentiating Oscillators During Photic Driving
por: Naskovska, Kristina, et al.
Publicado: (2020)