Cargando…

Using machine learning to extract cognitive status from the sleep EEG in progressing stages of dementia: defining interpretable and age-related features

Detalles Bibliográficos
Autores principales: Kam, Korey, Parekh, Ankit, Wickramaratne, Sajila, Varga, Andrew W
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995768/
https://www.ncbi.nlm.nih.gov/pubmed/36585819
http://dx.doi.org/10.1093/sleep/zsac324
_version_ 1784902892300271616
author Kam, Korey
Parekh, Ankit
Wickramaratne, Sajila
Varga, Andrew W
author_facet Kam, Korey
Parekh, Ankit
Wickramaratne, Sajila
Varga, Andrew W
author_sort Kam, Korey
collection PubMed
description
format Online
Article
Text
id pubmed-9995768
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-99957682023-03-10 Using machine learning to extract cognitive status from the sleep EEG in progressing stages of dementia: defining interpretable and age-related features Kam, Korey Parekh, Ankit Wickramaratne, Sajila Varga, Andrew W Sleep Editorials Oxford University Press 2022-12-31 /pmc/articles/PMC9995768/ /pubmed/36585819 http://dx.doi.org/10.1093/sleep/zsac324 Text en © Sleep Research Society 2022. Published by Oxford University Press on behalf of the Sleep Research Society. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Editorials
Kam, Korey
Parekh, Ankit
Wickramaratne, Sajila
Varga, Andrew W
Using machine learning to extract cognitive status from the sleep EEG in progressing stages of dementia: defining interpretable and age-related features
title Using machine learning to extract cognitive status from the sleep EEG in progressing stages of dementia: defining interpretable and age-related features
title_full Using machine learning to extract cognitive status from the sleep EEG in progressing stages of dementia: defining interpretable and age-related features
title_fullStr Using machine learning to extract cognitive status from the sleep EEG in progressing stages of dementia: defining interpretable and age-related features
title_full_unstemmed Using machine learning to extract cognitive status from the sleep EEG in progressing stages of dementia: defining interpretable and age-related features
title_short Using machine learning to extract cognitive status from the sleep EEG in progressing stages of dementia: defining interpretable and age-related features
title_sort using machine learning to extract cognitive status from the sleep eeg in progressing stages of dementia: defining interpretable and age-related features
topic Editorials
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995768/
https://www.ncbi.nlm.nih.gov/pubmed/36585819
http://dx.doi.org/10.1093/sleep/zsac324
work_keys_str_mv AT kamkorey usingmachinelearningtoextractcognitivestatusfromthesleepeeginprogressingstagesofdementiadefininginterpretableandagerelatedfeatures
AT parekhankit usingmachinelearningtoextractcognitivestatusfromthesleepeeginprogressingstagesofdementiadefininginterpretableandagerelatedfeatures
AT wickramaratnesajila usingmachinelearningtoextractcognitivestatusfromthesleepeeginprogressingstagesofdementiadefininginterpretableandagerelatedfeatures
AT vargaandreww usingmachinelearningtoextractcognitivestatusfromthesleepeeginprogressingstagesofdementiadefininginterpretableandagerelatedfeatures