Cargando…
Using machine learning to extract cognitive status from the sleep EEG in progressing stages of dementia: defining interpretable and age-related features
Autores principales: | Kam, Korey, Parekh, Ankit, Wickramaratne, Sajila, Varga, Andrew W |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995768/ https://www.ncbi.nlm.nih.gov/pubmed/36585819 http://dx.doi.org/10.1093/sleep/zsac324 |
Ejemplares similares
-
Editorial: Additive or synergistic impacts of sleep, circadian rhythm disturbances and other modifiable risk factors on established and novel plasma biomarkers of Alzheimer's disease pathology
por: Bubu, Omonigho M., et al.
Publicado: (2023) -
Conditional-GAN Based Data Augmentation for Deep Learning Task Classifier Improvement Using fNIRS Data
por: Wickramaratne, Sajila D., et al.
Publicado: (2021) -
The Importance of Sleep-Dependent Memory Testing in Positive Airway
Pressure Treatment of Obstructive Sleep Apnea
por: Varga, Andrew W., et al.
Publicado: (2021) -
Obstructive Sleep Apnea in Emotional Memory: Importance of Rapid Eye Movement Sleep and Window into Mental Health
por: Varga, Andrew W., et al.
Publicado: (2023) -
Necessity of Sleep for Motor Gist Learning in Mice
por: Pettibone, Ward D., et al.
Publicado: (2019)