Cargando…
EADD-YOLO: An efficient and accurate disease detector for apple leaf using improved lightweight YOLOv5
INTRODUCTION: Current detection methods for apple leaf diseases still suffer some challenges, such as the high number of parameters, low detection speed and poor detection performance for small dense spots, which limit the practical applications in agriculture. Therefore, an efficient and accurate m...
Autores principales: | Zhu, Shisong, Ma, Wanli, Wang, Jianlong, Yang, Meijuan, Wang, Yongmao, Wang, Chunyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996066/ https://www.ncbi.nlm.nih.gov/pubmed/36909428 http://dx.doi.org/10.3389/fpls.2023.1120724 |
Ejemplares similares
-
ALAD-YOLO:an lightweight and accurate detector for apple leaf diseases
por: Xu, Weishi, et al.
Publicado: (2023) -
MGA-YOLO: A lightweight one-stage network for apple leaf disease detection
por: Wang, Yiwen, et al.
Publicado: (2022) -
A Lightweight and Accurate UAV Detection Method Based on YOLOv4
por: Cai, Hao, et al.
Publicado: (2022) -
Tea leaf disease detection and identification based on YOLOv7 (YOLO-T)
por: Soeb, Md. Janibul Alam, et al.
Publicado: (2023) -
Toward surface defect detection in electronics manufacturing by an accurate and lightweight YOLO-style object detector
por: Wang, Jyunrong, et al.
Publicado: (2023)