Cargando…
Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding
Nucleic acid aptamers are ssDNA or ssRNA fragments that specifically recognize targets. However, the pharmacodynamic properties of natural aptamers consisting of 4 naturally occurring nucleosides (A, G, C, T/U) are generally restricted for inferior binding affinity than the cognate antibodies. The d...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996316/ https://www.ncbi.nlm.nih.gov/pubmed/36910146 http://dx.doi.org/10.3389/fcell.2023.1091809 |
_version_ | 1784903017631318016 |
---|---|
author | Chen, Zefeng Luo, Hang Gubu, Amu Yu, Sifan Zhang, Huarui Dai, Hong Zhang, Yihao Zhang, Baoting Ma, Yuan Lu, Aiping Zhang, Ge |
author_facet | Chen, Zefeng Luo, Hang Gubu, Amu Yu, Sifan Zhang, Huarui Dai, Hong Zhang, Yihao Zhang, Baoting Ma, Yuan Lu, Aiping Zhang, Ge |
author_sort | Chen, Zefeng |
collection | PubMed |
description | Nucleic acid aptamers are ssDNA or ssRNA fragments that specifically recognize targets. However, the pharmacodynamic properties of natural aptamers consisting of 4 naturally occurring nucleosides (A, G, C, T/U) are generally restricted for inferior binding affinity than the cognate antibodies. The development of high-affinity modification strategies has attracted extensive attention in aptamer applications. Chemically modified aptamers with stable three-dimensional shapes can tightly interact with the target proteins via enhanced non-covalent bonding, possibly resulting in hundreds of affinity enhancements. This review overviewed high-affinity modification strategies used in aptamers, including nucleobase modifications, fluorine modifications (2′-fluoro nucleic acid, 2′-fluoro arabino nucleic acid, 2′,2′-difluoro nucleic acid), structural alteration modifications (locked nucleic acid, unlocked nucleic acid), phosphate modifications (phosphorothioates, phosphorodithioates), and extended alphabets. The review emphasized how these high-affinity modifications function in effect as the interactions with target proteins, thereby refining the pharmacodynamic properties of aptamers. |
format | Online Article Text |
id | pubmed-9996316 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-99963162023-03-10 Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding Chen, Zefeng Luo, Hang Gubu, Amu Yu, Sifan Zhang, Huarui Dai, Hong Zhang, Yihao Zhang, Baoting Ma, Yuan Lu, Aiping Zhang, Ge Front Cell Dev Biol Cell and Developmental Biology Nucleic acid aptamers are ssDNA or ssRNA fragments that specifically recognize targets. However, the pharmacodynamic properties of natural aptamers consisting of 4 naturally occurring nucleosides (A, G, C, T/U) are generally restricted for inferior binding affinity than the cognate antibodies. The development of high-affinity modification strategies has attracted extensive attention in aptamer applications. Chemically modified aptamers with stable three-dimensional shapes can tightly interact with the target proteins via enhanced non-covalent bonding, possibly resulting in hundreds of affinity enhancements. This review overviewed high-affinity modification strategies used in aptamers, including nucleobase modifications, fluorine modifications (2′-fluoro nucleic acid, 2′-fluoro arabino nucleic acid, 2′,2′-difluoro nucleic acid), structural alteration modifications (locked nucleic acid, unlocked nucleic acid), phosphate modifications (phosphorothioates, phosphorodithioates), and extended alphabets. The review emphasized how these high-affinity modifications function in effect as the interactions with target proteins, thereby refining the pharmacodynamic properties of aptamers. Frontiers Media S.A. 2023-02-23 /pmc/articles/PMC9996316/ /pubmed/36910146 http://dx.doi.org/10.3389/fcell.2023.1091809 Text en Copyright © 2023 Chen, Luo, Gubu, Yu, Zhang, Dai, Zhang, Zhang, Ma, Lu and Zhang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Chen, Zefeng Luo, Hang Gubu, Amu Yu, Sifan Zhang, Huarui Dai, Hong Zhang, Yihao Zhang, Baoting Ma, Yuan Lu, Aiping Zhang, Ge Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding |
title | Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding |
title_full | Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding |
title_fullStr | Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding |
title_full_unstemmed | Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding |
title_short | Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding |
title_sort | chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996316/ https://www.ncbi.nlm.nih.gov/pubmed/36910146 http://dx.doi.org/10.3389/fcell.2023.1091809 |
work_keys_str_mv | AT chenzefeng chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding AT luohang chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding AT gubuamu chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding AT yusifan chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding AT zhanghuarui chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding AT daihong chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding AT zhangyihao chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding AT zhangbaoting chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding AT mayuan chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding AT luaiping chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding AT zhangge chemicallymodifiedaptamersforimprovingbindingaffinitytothetargetproteinsviaenhancednoncovalentbonding |