Cargando…
Robust deep learning based protein sequence design using ProteinMPNN
While deep learning has revolutionized protein structure prediction, almost all experimentally characterized de novo protein designs have been generated using physically based approaches such as Rosetta. Here we describe a deep learning based protein sequence design method, ProteinMPNN, with outstan...
Autores principales: | Dauparas, J., Anishchenko, I., Bennett, N., Bai, H., Ragotte, R. J., Milles, L. F., Wicky, B. I. M., Courbet, A., de Haas, R. J., Bethel, N., Leung, P. J. Y., Huddy, T. F., Pellock, S., Tischer, D., Chan, F., Koepnick, B., Nguyen, H., Kang, A., Sankaran, B., Bera, A. K., King, N. P., Baker, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997061/ https://www.ncbi.nlm.nih.gov/pubmed/36108050 http://dx.doi.org/10.1126/science.add2187 |
Ejemplares similares
-
Hallucinating symmetric protein assemblies
por: Wicky, B. I. M., et al.
Publicado: (2022) -
Hallucination of closed repeat proteins containing central pockets
por: An, Linna, et al.
Publicado: (2023) -
Protein sequence design by conformational landscape optimization
por: Norn, Christoffer, et al.
Publicado: (2021) -
graphDelta: MPNN Scoring Function for the Affinity
Prediction of Protein–Ligand Complexes
por: Karlov, Dmitry S., et al.
Publicado: (2020) -
Scaffolding protein functional sites using deep
learning
por: Wang, Jue, et al.
Publicado: (2022)