Cargando…

Beyond volumetry: Considering age-related changes in brain shape complexity using fractal dimensionality

Gray matter volume for cortical, subcortical, and ventricles all vary with age. However, these volumetric changes do not happen on their own, there are also age-related changes in cortical folding and other measures of brain shape. Fractal dimensionality has emerged as a more sensitive measure of br...

Descripción completa

Detalles Bibliográficos
Autor principal: Madan, Christopher R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997150/
https://www.ncbi.nlm.nih.gov/pubmed/36911503
http://dx.doi.org/10.1016/j.nbas.2021.100016
Descripción
Sumario:Gray matter volume for cortical, subcortical, and ventricles all vary with age. However, these volumetric changes do not happen on their own, there are also age-related changes in cortical folding and other measures of brain shape. Fractal dimensionality has emerged as a more sensitive measure of brain structure, capturing both volumetric and shape-related differences. For subcortical structures it is readily apparent that segmented structures do not differ in volume in isolation—adjacent regions must also vary in shape. Fractal dimensionality here also appears to be more sensitive to these age-related differences than volume. Given these differences in structure are quite prominent in structure, caution should be used when examining comparisons across age in brain function measures, as standard normalisation methods are not robust enough to adjust for these inter-individual differences in cortical structure.