Cargando…
Diagnosis of triple negative breast cancer using expression data with several machine learning tools
Breast cancer is one of the top three commonly caused cancers worldwide. Triple Negative Breast Cancer (TNBC), a subtype of breast cancer, lacks expression of the oestrogen receptor, progesterone receptor, and HER2. This makes the prognosis poor and early detection hard. Therefore, AI based neural m...
Autores principales: | Pranaya, Sankaranarayanan, Ragunath, PK, Venkatesan, P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997499/ https://www.ncbi.nlm.nih.gov/pubmed/36909691 http://dx.doi.org/10.6026/97320630018325 |
Ejemplares similares
-
GenPop-An Online Tool to Analyze Human Population Genetic Data
por: Mahesh, B Arundhati, et al.
Publicado: (2020) -
An ANN model for the differential diagnosis of tuberculosis and sarcoidosis
por: Vijayaraj, Mahalakshmi, et al.
Publicado: (2020) -
Machine learning analysis identifies genes differentiating triple negative breast cancers
por: Kothari, Charu, et al.
Publicado: (2020) -
Supervised Machine Learning Predictive Analytics For Triple-Negative Breast Cancer Death Outcomes
por: Xu, Yucan, et al.
Publicado: (2019) -
A Machine Learning Model to Predict the Triple Negative Breast Cancer Immune Subtype
por: Chen, Zihao, et al.
Publicado: (2021)