Cargando…

Denoising Using Noise2Void for Low-Field Magnetic Resonance Imaging: A Phantom Study

To reduce noise for low-field magnetic resonance imaging (MRI) using Noise2Void (N2V) and to demonstrate the N2V validity. N2V is one of the denoising convolutional neural network methods that allows the training of a model without a noiseless clean image. In this study, a kiwi fruit was scanned usi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kojima, Shinya, Ito, Toshimune, Hayashi, Tatsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997543/
https://www.ncbi.nlm.nih.gov/pubmed/36908491
http://dx.doi.org/10.4103/jmp.jmp_71_22
Descripción
Sumario:To reduce noise for low-field magnetic resonance imaging (MRI) using Noise2Void (N2V) and to demonstrate the N2V validity. N2V is one of the denoising convolutional neural network methods that allows the training of a model without a noiseless clean image. In this study, a kiwi fruit was scanned using a 0.35 Tesla MRI system, and the image qualities at pre- and postdenoising were evaluated. Structural similarity (SSIM), signal-to-noise ratio (SNR), and contrast ratio (CR) were measured, and visual assessment of noise and sharpness was observed. Both SSIM and SNR were significantly improved using N2V (P < 0.05). CR was unchanged between pre- and postdenoising images. The results of visual assessment for noise revealed higher scores in postdenoising images than that in predenoising images. The sharpness scores of postdenoising images were high when SNR was low. N2V provides effective noise reduction and is a useful denoising technique in low-field MRI.