Cargando…
Denoising Using Noise2Void for Low-Field Magnetic Resonance Imaging: A Phantom Study
To reduce noise for low-field magnetic resonance imaging (MRI) using Noise2Void (N2V) and to demonstrate the N2V validity. N2V is one of the denoising convolutional neural network methods that allows the training of a model without a noiseless clean image. In this study, a kiwi fruit was scanned usi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997543/ https://www.ncbi.nlm.nih.gov/pubmed/36908491 http://dx.doi.org/10.4103/jmp.jmp_71_22 |
_version_ | 1784903275918655488 |
---|---|
author | Kojima, Shinya Ito, Toshimune Hayashi, Tatsuya |
author_facet | Kojima, Shinya Ito, Toshimune Hayashi, Tatsuya |
author_sort | Kojima, Shinya |
collection | PubMed |
description | To reduce noise for low-field magnetic resonance imaging (MRI) using Noise2Void (N2V) and to demonstrate the N2V validity. N2V is one of the denoising convolutional neural network methods that allows the training of a model without a noiseless clean image. In this study, a kiwi fruit was scanned using a 0.35 Tesla MRI system, and the image qualities at pre- and postdenoising were evaluated. Structural similarity (SSIM), signal-to-noise ratio (SNR), and contrast ratio (CR) were measured, and visual assessment of noise and sharpness was observed. Both SSIM and SNR were significantly improved using N2V (P < 0.05). CR was unchanged between pre- and postdenoising images. The results of visual assessment for noise revealed higher scores in postdenoising images than that in predenoising images. The sharpness scores of postdenoising images were high when SNR was low. N2V provides effective noise reduction and is a useful denoising technique in low-field MRI. |
format | Online Article Text |
id | pubmed-9997543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Wolters Kluwer - Medknow |
record_format | MEDLINE/PubMed |
spelling | pubmed-99975432023-03-10 Denoising Using Noise2Void for Low-Field Magnetic Resonance Imaging: A Phantom Study Kojima, Shinya Ito, Toshimune Hayashi, Tatsuya J Med Phys Technical Note To reduce noise for low-field magnetic resonance imaging (MRI) using Noise2Void (N2V) and to demonstrate the N2V validity. N2V is one of the denoising convolutional neural network methods that allows the training of a model without a noiseless clean image. In this study, a kiwi fruit was scanned using a 0.35 Tesla MRI system, and the image qualities at pre- and postdenoising were evaluated. Structural similarity (SSIM), signal-to-noise ratio (SNR), and contrast ratio (CR) were measured, and visual assessment of noise and sharpness was observed. Both SSIM and SNR were significantly improved using N2V (P < 0.05). CR was unchanged between pre- and postdenoising images. The results of visual assessment for noise revealed higher scores in postdenoising images than that in predenoising images. The sharpness scores of postdenoising images were high when SNR was low. N2V provides effective noise reduction and is a useful denoising technique in low-field MRI. Wolters Kluwer - Medknow 2022 2023-01-10 /pmc/articles/PMC9997543/ /pubmed/36908491 http://dx.doi.org/10.4103/jmp.jmp_71_22 Text en Copyright: © 2023 Journal of Medical Physics https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Technical Note Kojima, Shinya Ito, Toshimune Hayashi, Tatsuya Denoising Using Noise2Void for Low-Field Magnetic Resonance Imaging: A Phantom Study |
title | Denoising Using Noise2Void for Low-Field Magnetic Resonance Imaging: A Phantom Study |
title_full | Denoising Using Noise2Void for Low-Field Magnetic Resonance Imaging: A Phantom Study |
title_fullStr | Denoising Using Noise2Void for Low-Field Magnetic Resonance Imaging: A Phantom Study |
title_full_unstemmed | Denoising Using Noise2Void for Low-Field Magnetic Resonance Imaging: A Phantom Study |
title_short | Denoising Using Noise2Void for Low-Field Magnetic Resonance Imaging: A Phantom Study |
title_sort | denoising using noise2void for low-field magnetic resonance imaging: a phantom study |
topic | Technical Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997543/ https://www.ncbi.nlm.nih.gov/pubmed/36908491 http://dx.doi.org/10.4103/jmp.jmp_71_22 |
work_keys_str_mv | AT kojimashinya denoisingusingnoise2voidforlowfieldmagneticresonanceimagingaphantomstudy AT itotoshimune denoisingusingnoise2voidforlowfieldmagneticresonanceimagingaphantomstudy AT hayashitatsuya denoisingusingnoise2voidforlowfieldmagneticresonanceimagingaphantomstudy |