Cargando…

Adding pattern and process to eco-evo theory and applications

Eco-evolutionary dynamics result when interacting biological forces simultaneously produce demographic and genetic population responses. Eco-evolutionary simulators traditionally manage complexity by minimizing the influence of spatial pattern on process. However, such simplifications can limit thei...

Descripción completa

Detalles Bibliográficos
Autores principales: White, Jennifer M., Schumaker, Nathan H., Chock, Rachel Y., Watkins, Sydney M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997922/
https://www.ncbi.nlm.nih.gov/pubmed/36893082
http://dx.doi.org/10.1371/journal.pone.0282535
Descripción
Sumario:Eco-evolutionary dynamics result when interacting biological forces simultaneously produce demographic and genetic population responses. Eco-evolutionary simulators traditionally manage complexity by minimizing the influence of spatial pattern on process. However, such simplifications can limit their utility in real-world applications. We present a novel simulation modeling approach for investigating eco-evolutionary dynamics, centered on the driving role of landscape pattern. Our spatially-explicit, individual-based mechanistic simulation approach overcomes existing methodological challenges, generates new insights, and paves the way for future investigations in four focal disciplines: Landscape Genetics, Population Genetics, Conservation Biology, and Evolutionary Ecology. We developed a simple individual-based model to illustrate how spatial structure drives eco-evo dynamics. By making minor changes to our landscape’s structure, we simulated continuous, isolated, and semi-connected landscapes, and simultaneously tested several classical assumptions of the focal disciplines. Our results exhibit expected patterns of isolation, drift, and extinction. By imposing landscape change on otherwise functionally-static eco-evolutionary models, we altered key emergent properties such as gene-flow and adaptive selection. We observed demo-genetic responses to these landscape manipulations, including changes in population size, probability of extinction, and allele frequencies. Our model also demonstrated how demo-genetic traits, including generation time and migration rate, can arise from a mechanistic model, rather than being specified a priori. We identify simplifying assumptions common to four focal disciplines, and illustrate how new insights might be developed in eco-evolutionary theory and applications by better linking biological processes to landscape patterns that we know influence them, but that have understandably been left out of many past modeling studies.