Cargando…
A hybrid CNN and ensemble model for COVID-19 lung infection detection on chest CT scans
COVID-19 is highly infectious and causes acute respiratory disease. Machine learning (ML) and deep learning (DL) models are vital in detecting disease from computerized chest tomography (CT) scans. The DL models outperformed the ML models. For COVID-19 detection from CT scan images, DL models are us...
Autores principales: | Akl, Ahmed A., Hosny, Khalid M., Fouda, Mostafa M., Salah, Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997961/ https://www.ncbi.nlm.nih.gov/pubmed/36893081 http://dx.doi.org/10.1371/journal.pone.0282608 |
Ejemplares similares
-
A light CNN for detecting COVID-19 from CT scans of the chest
por: Polsinelli, Matteo, et al.
Publicado: (2020) -
COVID-19 detection from lung CT-Scans using a fuzzy integral-based CNN ensemble
por: Kundu, Rohit, et al.
Publicado: (2021) -
COVID-19 diagnosis from CT scans and chest X-ray images using low-cost Raspberry Pi
por: Hosny, Khalid M., et al.
Publicado: (2021) -
COVID-Nets: deep CNN architectures for detecting COVID-19 using chest CT scans
por: Alshazly, Hammam, et al.
Publicado: (2021) -
COVID-19 chest X-ray detection through blending ensemble of CNN snapshots
por: Banerjee, Avinandan, et al.
Publicado: (2022)