Cargando…
Not getting in too deep: A practical deep learning approach to routine crystallisation image classification
Using a relatively small training set of (~)16 thousand images from macromolecular crystallisation experiments, we compare classification results obtained with four of the most widely-used convolutional deep-learning network architectures that can be implemented without the need for extensive comput...
Autores principales: | Milne, Jamie, Qian, Chen, Hargreaves, David, Wang, Yinhai, Wilson, Julie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997964/ https://www.ncbi.nlm.nih.gov/pubmed/36893084 http://dx.doi.org/10.1371/journal.pone.0282562 |
Ejemplares similares
-
Deep Learning for Classification of Bone Lesions on Routine MRI
por: Eweje, Feyisope R., et al.
Publicado: (2021) -
Getting started with deep learning
por: Patterson, Josh, et al.
Publicado: (2018) -
Deep learning cookbook: practical recipes to get started quickly
por: Osinga, Douwe
Publicado: (2018) -
A Review Study of the Deep Learning Techniques used for the Classification of Chest Radiological Images for COVID-19 Diagnosis
por: Wang, Yu, et al.
Publicado: (2022) -
Towards controlling the crystallisation behaviour of fenofibrate melt: triggers of crystallisation and polymorphic transformation
por: Tipduangta, Pratchaya, et al.
Publicado: (2018)