Cargando…

Multi-store collaborative delivery optimization based on Top-K order-split

Regarding the fulfillment optimization of online retail orders, many researchers focus more on warehouse optimization and distribution center optimization. However, under the background of new retailing, traditional retailers carry out online services, forming an order fulfillment model with physica...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yanju, Ou, Liping, Liu, Jiaxu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997996/
https://www.ncbi.nlm.nih.gov/pubmed/36893174
http://dx.doi.org/10.1371/journal.pone.0278690
Descripción
Sumario:Regarding the fulfillment optimization of online retail orders, many researchers focus more on warehouse optimization and distribution center optimization. However, under the background of new retailing, traditional retailers carry out online services, forming an order fulfillment model with physical stores as front warehouses. Studies that focus on physical stores and consider both order splitting and store delivery are rare, which cannot meet the order optimization needs of traditional retailers. To this end, this study proposes a new problem called the “Multi-Store Collaborative Delivery Optimization (MCDO)”, in which not only make the order-split plans for stores but also design the order-delivery routes for them, such that the order fulfillment cost is minimized. To solve the problem, a Top-K breadth-first search and a local search are integrated to construct a hybrid heuristic algorithm, named “Top-K Recommendation & Improved Local Search (TKILS)”. This study optimizes the search efficiency of the breadth-first search by controlling the number of sub-orders and improving the initial solution of the local search using a greedy cost function. Then achieve the joint optimization of order-split and order-delivery by improving the local optimization operators. Finally, extensive experiments on synthetic and real datasets validate the effectiveness and applicability of the algorithm this study proposed.