Cargando…

Synthesis, Structure, Hirshfeld Surface Analysis, Non-Covalent Interaction, and In Silico Studies of 4-Hydroxy-1-[(4-Nitrophenyl)Sulfonyl]Pyrrolidine-2-Carboxyllic Acid

The new compound 4-hydroxy-1-[(4-nitrophenyl)sulfonyl]pyrrolidine-2-carboxyllic acid was obtained by the reaction of 4-hydroxyproline with 4-nitrobenzenesulfonyl chloride. The compound was characterized using single crystal X-ray diffraction studies. Spectroscopic methods including NMR, FTIR, ES-MS,...

Descripción completa

Detalles Bibliográficos
Autores principales: Ugwu, David Izuchukwu, Eze, Florence Uchenna, Ezeorah, Chigozie Julius, Rhyman, Lydia, Ramasami, Ponnadurai, Tania, Groutso, Eze, Cosmas Chinweike, Uzoewulu, Chiamaka Peace, Ogboo, Blessing Chinweotito, Okpareke, Obinna Chibueze
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998016/
https://www.ncbi.nlm.nih.gov/pubmed/37362239
http://dx.doi.org/10.1007/s10870-023-00978-0
Descripción
Sumario:The new compound 4-hydroxy-1-[(4-nitrophenyl)sulfonyl]pyrrolidine-2-carboxyllic acid was obtained by the reaction of 4-hydroxyproline with 4-nitrobenzenesulfonyl chloride. The compound was characterized using single crystal X-ray diffraction studies. Spectroscopic methods including NMR, FTIR, ES-MS, and UV were employed for further structural analysis of the synthesized compound. The title compound was found to have crystallized in an orthorhombic crystal system with space group P2(1)2(1)2(1). The S1-N1 bond length of 1.628 (2) Å was a strong indication of the formation of the title compound. The absence of characteristic downfield (1)H NMR peak of pyrrolidine ring and the presence of S–N stretching vibration at 857.82 cm(−1) on the FTIR are strong indications for the formation of the sulfonamide. The experimental study was complemented with computations at the B3LYP/6-311G +  + (d,p) level of theory to gain more understanding of interactions in the compound at the molecular level. Noncovalent interaction, Hirsfeld surface analysis and interaction energy calculations were employed in the analysis of the supramolecular architecture of the compound. Predicted ADMET parameters, awarded suitable bioavailability credentials, while the molecular docking study indicated that the compound enchants promising inhibition prospects against dihydropteroate synthase, DNA topoisomerase, and SARS-CoV-2 spike. GRAPHICAL ABSTRACT: Herein we present the solid state structure, noncovalent interaction and spectroscopic analysis of a prospective bioactive compound 4-hydroxy-1-[(4-nitrophenyl)sulphonyl]pyrrolidine-2-carboxyllic acid. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10870-023-00978-0.