Cargando…
A comparison of methods for training population optimization in genomic selection
KEY MESSAGE: Maximizing CDmean and Avg_GRM_self were the best criteria for training set optimization. A training set size of 50–55% (targeted) or 65–85% (untargeted) is needed to obtain 95% of the accuracy. ABSTRACT: With the advent of genomic selection (GS) as a widespread breeding tool, mechanism...
Autores principales: | Fernández-González, Javier, Akdemir, Deniz, Isidro y Sánchez, Julio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998580/ https://www.ncbi.nlm.nih.gov/pubmed/36892603 http://dx.doi.org/10.1007/s00122-023-04265-6 |
Ejemplares similares
-
Training Set Optimization for Sparse Phenotyping in Genomic Selection: A Conceptual Overview
por: Isidro y Sánchez, Julio, et al.
Publicado: (2021) -
Design of training populations for selective phenotyping in genomic prediction
por: Akdemir, Deniz, et al.
Publicado: (2019) -
Training set optimization under population structure in genomic selection
por: Isidro, Julio, et al.
Publicado: (2014) -
TrainSel: An R Package for Selection of Training Populations
por: Akdemir, Deniz, et al.
Publicado: (2021) -
Optimization of genomic selection training populations with a genetic algorithm
por: Akdemir, Deniz, et al.
Publicado: (2015)