Cargando…
ECG-guided non-invasive estimation of pulmonary congestion in patients with heart failure
Quantifying hemodynamic severity in patients with heart failure (HF) is an integral part of clinical care. A key indicator of hemodynamic severity is the mean Pulmonary Capillary Wedge Pressure (mPCWP), which is ideally measured invasively. Accurate non-invasive estimates of the mPCWP in patients wi...
Autores principales: | Raghu, Aniruddh, Schlesinger, Daphne, Pomerantsev, Eugene, Devireddy, Srikanth, Shah, Pinak, Garasic, Joseph, Guttag, John, Stultz, Collin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998622/ https://www.ncbi.nlm.nih.gov/pubmed/36894601 http://dx.doi.org/10.1038/s41598-023-30900-9 |
Ejemplares similares
-
ECG Morphological Variability in Beat Space for Risk Stratification After Acute Coronary Syndrome
por: Liu, Yun, et al.
Publicado: (2014) -
Beatquency domain and machine learning improve prediction of cardiovascular death after acute coronary syndrome
por: Liu, Yun, et al.
Publicado: (2016) -
Inter-Patient Congestive Heart Failure Detection Using ECG-Convolution-Vision Transformer Network
por: Liu, Taotao, et al.
Publicado: (2022) -
Congestive heart failure
por: Zhao, Xuan
Publicado: (2019) -
Predicting outcomes in patients with aortic stenosis using machine learning: the Aortic Stenosis Risk (ASteRisk) score
por: Namasivayam, Mayooran, et al.
Publicado: (2022)