Cargando…
Exploring potential barriers in equitable access to pediatric diagnostic imaging using machine learning
In this work, we examine magnetic resonance imaging (MRI) and ultrasound (US) appointments at the Diagnostic Imaging (DI) department of a pediatric hospital to discover possible relationships between selected patient features and no-show or long waiting room time endpoints. The chosen features inclu...
Autores principales: | Taheri-Shirazi, Maryam, Namdar, Khashayar, Ling, Kelvin, Karmali, Karima, McCradden, Melissa D., Lee, Wayne, Khalvati, Farzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998668/ https://www.ncbi.nlm.nih.gov/pubmed/36908403 http://dx.doi.org/10.3389/fpubh.2023.968319 |
Ejemplares similares
-
A Modified AUC for Training Convolutional Neural Networks: Taking Confidence Into Account
por: Namdar, Khashayar, et al.
Publicado: (2021) -
When is accuracy off-target?
por: McCradden, Melissa D.
Publicado: (2021) -
A Transfer Learning–Based Active Learning Framework for Brain Tumor Classification
por: Hao, Ruqian, et al.
Publicado: (2021) -
Improving disease classification performance and explainability of deep learning models in radiology with heatmap generators
por: Watanabe, Akino, et al.
Publicado: (2022) -
Radiomics, machine learning, and artificial intelligence—what the neuroradiologist needs to know
por: Wagner, Matthias W., et al.
Publicado: (2021)