Cargando…
Machine learning accelerated approach to infer nuclear magnetic resonance porosity for a middle eastern carbonate reservoir
Carbonate rocks present a complicated pore system owing to the existence of intra-particle and interparticle porosities. Therefore, characterization of carbonate rocks using petrophysical data is a challenging task. Conventional neutron, sonic, and neutron-density porosities are proven to be less ac...
Autores principales: | Mustafa, Ayyaz, Tariq, Zeeshan, Mahmoud, Mohamed, Abdulraheem, Abdulazeez |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998858/ https://www.ncbi.nlm.nih.gov/pubmed/36894553 http://dx.doi.org/10.1038/s41598-023-30708-7 |
Ejemplares similares
-
Machine Learning-Based Propped Fracture Conductivity
Correlations of Several Shale Formations
por: Desouky, Mahmoud, et al.
Publicado: (2021) -
Intelligent Prediction for Rock Porosity While Drilling Complex Lithology in Real Time
por: Gamal, Hany, et al.
Publicado: (2021) -
Data-Driven Approaches to Predict Thermal Maturity
Indices of Organic Matter Using Artificial Neural Networks
por: Tariq, Zeeshan, et al.
Publicado: (2020) -
Machine Learning-Based
Accelerated Approaches to Infer
Breakdown Pressure of Several Unconventional Rock Types
por: Tariq, Zeeshan, et al.
Publicado: (2022) -
Comparative Analysis of Static and Dynamic Mechanical Behavior for Dry and Saturated Cement Mortar
por: Mustafa, Ayyaz, et al.
Publicado: (2019)