Cargando…
PERK recruits E-Syt1 at ER–mitochondria contacts for mitochondrial lipid transport and respiration
The integrity of ER–mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER–mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, b...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998969/ https://www.ncbi.nlm.nih.gov/pubmed/36821088 http://dx.doi.org/10.1083/jcb.202206008 |
_version_ | 1784903569558732800 |
---|---|
author | Sassano, Maria Livia van Vliet, Alexander R. Vervoort, Ellen Van Eygen, Sofie Van den Haute, Chris Pavie, Benjamin Roels, Joris Swinnen, Johannes V. Spinazzi, Marco Moens, Leen Casteels, Kristina Meyts, Isabelle Pinton, Paolo Marchi, Saverio Rochin, Leila Giordano, Francesca Felipe-Abrio, Blanca Agostinis, Patrizia |
author_facet | Sassano, Maria Livia van Vliet, Alexander R. Vervoort, Ellen Van Eygen, Sofie Van den Haute, Chris Pavie, Benjamin Roels, Joris Swinnen, Johannes V. Spinazzi, Marco Moens, Leen Casteels, Kristina Meyts, Isabelle Pinton, Paolo Marchi, Saverio Rochin, Leila Giordano, Francesca Felipe-Abrio, Blanca Agostinis, Patrizia |
author_sort | Sassano, Maria Livia |
collection | PubMed |
description | The integrity of ER–mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER–mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER–mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER–plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness. |
format | Online Article Text |
id | pubmed-9998969 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-99989692023-03-11 PERK recruits E-Syt1 at ER–mitochondria contacts for mitochondrial lipid transport and respiration Sassano, Maria Livia van Vliet, Alexander R. Vervoort, Ellen Van Eygen, Sofie Van den Haute, Chris Pavie, Benjamin Roels, Joris Swinnen, Johannes V. Spinazzi, Marco Moens, Leen Casteels, Kristina Meyts, Isabelle Pinton, Paolo Marchi, Saverio Rochin, Leila Giordano, Francesca Felipe-Abrio, Blanca Agostinis, Patrizia J Cell Biol Article The integrity of ER–mitochondria appositions ensures transfer of ions and phospholipids (PLs) between these organelles and exerts crucial effects on mitochondrial bioenergetics. Malfunctions within the ER–mitochondria contacts altering lipid trafficking homeostasis manifest in diverse pathologies, but the molecular effectors governing this process remain ill-defined. Here, we report that PERK promotes lipid trafficking at the ER–mitochondria contact sites (EMCS) through a non-conventional, unfolded protein response-independent, mechanism. PERK operates as an adaptor for the recruitment of the ER–plasma membrane tether and lipid transfer protein (LTP) Extended-Synaptotagmin 1 (E-Syt1), within the EMCS. In resting cells, the heterotypic E-Syt1-PERK interaction endorses transfer of PLs between the ER and mitochondria. Weakening the E-Syt1-PERK interaction or removing the lipid transfer SMP-domain of E-Syt1, compromises mitochondrial respiration. Our findings unravel E-Syt1 as a PERK interacting LTP and molecular component of the lipid trafficking machinery of the EMCS, which critically maintains mitochondrial homeostasis and fitness. Rockefeller University Press 2023-02-23 /pmc/articles/PMC9998969/ /pubmed/36821088 http://dx.doi.org/10.1083/jcb.202206008 Text en © 2023 Sassano et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sassano, Maria Livia van Vliet, Alexander R. Vervoort, Ellen Van Eygen, Sofie Van den Haute, Chris Pavie, Benjamin Roels, Joris Swinnen, Johannes V. Spinazzi, Marco Moens, Leen Casteels, Kristina Meyts, Isabelle Pinton, Paolo Marchi, Saverio Rochin, Leila Giordano, Francesca Felipe-Abrio, Blanca Agostinis, Patrizia PERK recruits E-Syt1 at ER–mitochondria contacts for mitochondrial lipid transport and respiration |
title | PERK recruits E-Syt1 at ER–mitochondria contacts for mitochondrial lipid transport and respiration |
title_full | PERK recruits E-Syt1 at ER–mitochondria contacts for mitochondrial lipid transport and respiration |
title_fullStr | PERK recruits E-Syt1 at ER–mitochondria contacts for mitochondrial lipid transport and respiration |
title_full_unstemmed | PERK recruits E-Syt1 at ER–mitochondria contacts for mitochondrial lipid transport and respiration |
title_short | PERK recruits E-Syt1 at ER–mitochondria contacts for mitochondrial lipid transport and respiration |
title_sort | perk recruits e-syt1 at er–mitochondria contacts for mitochondrial lipid transport and respiration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998969/ https://www.ncbi.nlm.nih.gov/pubmed/36821088 http://dx.doi.org/10.1083/jcb.202206008 |
work_keys_str_mv | AT sassanomarialivia perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT vanvlietalexanderr perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT vervoortellen perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT vaneygensofie perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT vandenhautechris perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT paviebenjamin perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT roelsjoris perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT swinnenjohannesv perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT spinazzimarco perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT moensleen perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT casteelskristina perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT meytsisabelle perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT pintonpaolo perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT marchisaverio perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT rochinleila perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT giordanofrancesca perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT felipeabrioblanca perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration AT agostinispatrizia perkrecruitsesyt1atermitochondriacontactsformitochondriallipidtransportandrespiration |