Cargando…
Stroke risk study based on deep learning-based magnetic resonance imaging carotid plaque automatic segmentation algorithm
INTRODUCTION: The primary factor for cardiovascular disease and upcoming cardiovascular events is atherosclerosis. Recently, carotid plaque texture, as observed on ultrasonography, is varied and difficult to classify with the human eye due to substantial inter-observer variability. High-resolution m...
Autores principales: | Chen, Ya-Fang, Chen, Zhen-Jie, Lin, You-Yu, Lin, Zhi-Qiang, Chen, Chun-Nuan, Yang, Mei-Li, Zhang, Jin-Yin, Li, Yuan-zhe, Wang, Yi, Huang, Yin-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998982/ https://www.ncbi.nlm.nih.gov/pubmed/36910524 http://dx.doi.org/10.3389/fcvm.2023.1101765 |
Ejemplares similares
-
The application of the nnU-Net-based automatic segmentation model in assisting carotid artery stenosis and carotid atherosclerotic plaque evaluation
por: Zhu, Ying, et al.
Publicado: (2022) -
Carotid Plaque Composition and the Importance of Non-Invasive in Imaging Stroke Prevention
por: Geiger, Martin Andreas, et al.
Publicado: (2022) -
Carotid geometry is independently associated with complicated carotid artery plaques
por: Strecker, Christoph, et al.
Publicado: (2023) -
Features of non-stenotic carotid plaque on computed tomographic angiography in patients with embolic stroke of undetermined source
por: Guo, Danling, et al.
Publicado: (2022) -
Machine learning models for predicting the risk factor of carotid plaque in cardiovascular disease
por: Bin, Chengling, et al.
Publicado: (2023)