Cargando…
Radiomics and machine learning applied to STIR sequence for prediction of quantitative parameters in facioscapulohumeral disease
PURPOSE: Quantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able to detect even subtle changes in muscle pathology. The aim of this study is to evaluate the feasibility of using a conventional short-tau in...
Autores principales: | Colelli, Giulia, Barzaghi, Leonardo, Paoletti, Matteo, Monforte, Mauro, Bergsland, Niels, Manco, Giulia, Deligianni, Xeni, Santini, Francesco, Ricci, Enzo, Tasca, Giorgio, Mira, Antonietta, Figini, Silvia, Pichiecchio, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999017/ https://www.ncbi.nlm.nih.gov/pubmed/36908599 http://dx.doi.org/10.3389/fneur.2023.1105276 |
Ejemplares similares
-
Dynamic magnetic resonance imaging of muscle contraction in facioscapulohumeral muscular dystrophy
por: Deligianni, Xeni, et al.
Publicado: (2022) -
Deep learning for automatic segmentation of thigh and leg muscles
por: Agosti, Abramo, et al.
Publicado: (2021) -
Fast Open-Source Toolkit for Water T2 Mapping in the Presence of Fat From Multi-Echo Spin-Echo Acquisitions for Muscle MRI
por: Santini, Francesco, et al.
Publicado: (2021) -
Longitudinal Quantitative MRI Evaluation of Muscle Involvement in Amyotrophic Lateral Sclerosis
por: Paoletti, Matteo, et al.
Publicado: (2021) -
Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging
por: Monforte, Mauro, et al.
Publicado: (2019)