Cargando…

Azide click chemistry on magnetotactic bacteria: A versatile technique to attach a cargo

Adding biomolecules to living organisms and cells is the basis for creating living materials or biohybrids for robotic systems. Bioorthogonal chemistry allows covalently modifying biomolecules with functional groups not natively present under biological conditions and is therefore applicable to micr...

Descripción completa

Detalles Bibliográficos
Autores principales: David Soto Rodriguez, Paul Eduardo, Sirinelli-Kojadinovic, Mila, Rouzaud, Maximilien, Faivre, Damien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999208/
https://www.ncbi.nlm.nih.gov/pubmed/36910269
http://dx.doi.org/10.1016/j.mtbio.2023.100587
_version_ 1784903618092072960
author David Soto Rodriguez, Paul Eduardo
Sirinelli-Kojadinovic, Mila
Rouzaud, Maximilien
Faivre, Damien
author_facet David Soto Rodriguez, Paul Eduardo
Sirinelli-Kojadinovic, Mila
Rouzaud, Maximilien
Faivre, Damien
author_sort David Soto Rodriguez, Paul Eduardo
collection PubMed
description Adding biomolecules to living organisms and cells is the basis for creating living materials or biohybrids for robotic systems. Bioorthogonal chemistry allows covalently modifying biomolecules with functional groups not natively present under biological conditions and is therefore applicable to microorganisms and cells. Click chemistry is a biorthogonal chemistry approach that allows the study and manipulation of living entities. Incorporating the bioorthogonal click-chemistry handle, azide groups, into living microorganisms has been achieved by metabolic labeling, i.e., by culturing cells or organisms in a modified culture media having a specific natural molecular building block (e.g., amino acid, nucleotide, carbohydrate) modified with a tagged chemical analog. Here we explore the effect of the azide group incorporation into the magnetotactic bacteria Magnetospirillum gryphiswaldense (MSR-1) by adding a modified amino acid, 3-Azido-d-Alanine, during their cultivation. We show the existence of a concentration limit to effectively incorporate the azide group while maintaining the magnetic properties of the cells. We explore the use of this modification to explore the combination with versatile single-cell tagging methods.
format Online
Article
Text
id pubmed-9999208
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99992082023-03-11 Azide click chemistry on magnetotactic bacteria: A versatile technique to attach a cargo David Soto Rodriguez, Paul Eduardo Sirinelli-Kojadinovic, Mila Rouzaud, Maximilien Faivre, Damien Mater Today Bio Full Length Article Adding biomolecules to living organisms and cells is the basis for creating living materials or biohybrids for robotic systems. Bioorthogonal chemistry allows covalently modifying biomolecules with functional groups not natively present under biological conditions and is therefore applicable to microorganisms and cells. Click chemistry is a biorthogonal chemistry approach that allows the study and manipulation of living entities. Incorporating the bioorthogonal click-chemistry handle, azide groups, into living microorganisms has been achieved by metabolic labeling, i.e., by culturing cells or organisms in a modified culture media having a specific natural molecular building block (e.g., amino acid, nucleotide, carbohydrate) modified with a tagged chemical analog. Here we explore the effect of the azide group incorporation into the magnetotactic bacteria Magnetospirillum gryphiswaldense (MSR-1) by adding a modified amino acid, 3-Azido-d-Alanine, during their cultivation. We show the existence of a concentration limit to effectively incorporate the azide group while maintaining the magnetic properties of the cells. We explore the use of this modification to explore the combination with versatile single-cell tagging methods. Elsevier 2023-02-23 /pmc/articles/PMC9999208/ /pubmed/36910269 http://dx.doi.org/10.1016/j.mtbio.2023.100587 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Full Length Article
David Soto Rodriguez, Paul Eduardo
Sirinelli-Kojadinovic, Mila
Rouzaud, Maximilien
Faivre, Damien
Azide click chemistry on magnetotactic bacteria: A versatile technique to attach a cargo
title Azide click chemistry on magnetotactic bacteria: A versatile technique to attach a cargo
title_full Azide click chemistry on magnetotactic bacteria: A versatile technique to attach a cargo
title_fullStr Azide click chemistry on magnetotactic bacteria: A versatile technique to attach a cargo
title_full_unstemmed Azide click chemistry on magnetotactic bacteria: A versatile technique to attach a cargo
title_short Azide click chemistry on magnetotactic bacteria: A versatile technique to attach a cargo
title_sort azide click chemistry on magnetotactic bacteria: a versatile technique to attach a cargo
topic Full Length Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999208/
https://www.ncbi.nlm.nih.gov/pubmed/36910269
http://dx.doi.org/10.1016/j.mtbio.2023.100587
work_keys_str_mv AT davidsotorodriguezpauleduardo azideclickchemistryonmagnetotacticbacteriaaversatiletechniquetoattachacargo
AT sirinellikojadinovicmila azideclickchemistryonmagnetotacticbacteriaaversatiletechniquetoattachacargo
AT rouzaudmaximilien azideclickchemistryonmagnetotacticbacteriaaversatiletechniquetoattachacargo
AT faivredamien azideclickchemistryonmagnetotacticbacteriaaversatiletechniquetoattachacargo