Cargando…

A benzenesulfonic acid-modified organic polymer monolithic column with reversed-phase/hydrophilic bifunctional selectivity for capillary electrochromatography

Here, a styrene-based polymer monolithic column poly(VBS-co-TAT-co-AHM) with reversed-phase/hydrophilic interaction liquid chromatography (RPLC/HILIC) bifunctional separation mode was successfully prepared for capillary electrochromatography by the in situ polymerization of sodium p-styrene sulfonat...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yikun, He, Ning, Lu, Yingfang, Li, Weiqiang, He, Xin, Li, Zhentao, Chen, Zilin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Xi'an Jiaotong University 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999294/
https://www.ncbi.nlm.nih.gov/pubmed/36908858
http://dx.doi.org/10.1016/j.jpha.2022.10.006
Descripción
Sumario:Here, a styrene-based polymer monolithic column poly(VBS-co-TAT-co-AHM) with reversed-phase/hydrophilic interaction liquid chromatography (RPLC/HILIC) bifunctional separation mode was successfully prepared for capillary electrochromatography by the in situ polymerization of sodium p-styrene sulfonate (VBS) with cross-linkers 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) and 1,3,5-triacryloylhexahydro-1,3,5-triazine (TAT). The preparation conditions of the monolith were optimized. The morphology and formation of the poly(VBS-co-TAT-co-AHM) monolith were confirmed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The separation performances of the monolith were evaluated systematically. It should be noted that the incorporation of VBS functional monomer can provide π−π interactions, hydrophilic interactions, and ion-exchange interactions. Hence, the prepared poly(VBS-co-TAT-co-AHM) monolith can achieve efficient separation of thiourea compounds, benzene series, phenol compounds, aniline compounds and sulfonamides in RPLC or HILIC separation mode. The largest theoretical plate number for N,N′-dimethylthiourea reached 1.7 × 10(5) plates/m. In addition, the poly(VBS-co-TAT-co-AHM) monolithic column showed excellent reproducibility and stability. This novel monolithic column has great application value and potential in capillary electrochromatography (CEC).