Cargando…
Can we explain machine learning-based prediction for rupture status assessments of intracranial aneurysms?
Although applying machine learning (ML) algorithms to rupture status assessment of intracranial aneurysms (IA) has yielded promising results, the opaqueness of some ML methods has limited their clinical translation. We presented the first explainability comparison of six commonly used ML algorithms:...
Autores principales: | Mu, N, Rezaeitaleshmahalleh, M, Lyu, Z, Wang, M, Tang, J, Strother, C M, Gemmete, J J, Pandey, A S, Jiang, J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999353/ https://www.ncbi.nlm.nih.gov/pubmed/36626819 http://dx.doi.org/10.1088/2057-1976/acb1b3 |
Ejemplares similares
-
Ruptured Intracranial Aneurysms
por: McCaughey, W. T. E.
Publicado: (1956) -
Effect of HUK on the outcome of ruptured intracranial aneurysm
por: Chen, Luyue, et al.
Publicado: (2018) -
Impact of Intracranial Aneurysm Morphology and Rupture Status on the Particle Residence Time
por: Leemans, E.L., et al.
Publicado: (2019) -
Migraine before rupture of intracranial aneurysms
por: Lebedeva, Elena R, et al.
Publicado: (2013) -
Trigger factors for rupture of intracranial aneurysms in relation to patient and aneurysm characteristics
por: Vlak, Monique H. M., et al.
Publicado: (2011)