Cargando…
Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces
[Image: see text] Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron–hole pairs across the vdW interface is essential for optoelectr...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999450/ https://www.ncbi.nlm.nih.gov/pubmed/36799492 http://dx.doi.org/10.1021/acs.nanolett.2c04795 |
_version_ | 1784903663653748736 |
---|---|
author | Fu, Shuai Jia, Xiaoyu Hassan, Aliaa S. Zhang, Heng Zheng, Wenhao Gao, Lei Di Virgilio, Lucia Krasel, Sven Beljonne, David Tielrooij, Klaas-Jan Bonn, Mischa Wang, Hai I. |
author_facet | Fu, Shuai Jia, Xiaoyu Hassan, Aliaa S. Zhang, Heng Zheng, Wenhao Gao, Lei Di Virgilio, Lucia Krasel, Sven Beljonne, David Tielrooij, Klaas-Jan Bonn, Mischa Wang, Hai I. |
author_sort | Fu, Shuai |
collection | PubMed |
description | [Image: see text] Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron–hole pairs across the vdW interface is essential for optoelectronic applications. Previous studies have unveiled the critical role of defects in trapping photogenerated charge carriers to modulate the photoconductive gain for photodetection. However, the nature and role of defects in tuning interfacial charge carrier dynamics have remained elusive. Here, we investigate the nonequilibrium charge dynamics at the graphene–WS(2) vdW interface under electrochemical gating by operando optical-pump terahertz-probe spectroscopy. We report full control over charge separation states and thus photogating field direction by electrically tuning the defect occupancy. Our results show that electron occupancy of the two in-gap states, presumably originating from sulfur vacancies, can account for the observed rich interfacial charge transfer dynamics and electrically tunable photogating fields, providing microscopic insights for optimizing optoelectronic devices. |
format | Online Article Text |
id | pubmed-9999450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99994502023-03-11 Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces Fu, Shuai Jia, Xiaoyu Hassan, Aliaa S. Zhang, Heng Zheng, Wenhao Gao, Lei Di Virgilio, Lucia Krasel, Sven Beljonne, David Tielrooij, Klaas-Jan Bonn, Mischa Wang, Hai I. Nano Lett [Image: see text] Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron–hole pairs across the vdW interface is essential for optoelectronic applications. Previous studies have unveiled the critical role of defects in trapping photogenerated charge carriers to modulate the photoconductive gain for photodetection. However, the nature and role of defects in tuning interfacial charge carrier dynamics have remained elusive. Here, we investigate the nonequilibrium charge dynamics at the graphene–WS(2) vdW interface under electrochemical gating by operando optical-pump terahertz-probe spectroscopy. We report full control over charge separation states and thus photogating field direction by electrically tuning the defect occupancy. Our results show that electron occupancy of the two in-gap states, presumably originating from sulfur vacancies, can account for the observed rich interfacial charge transfer dynamics and electrically tunable photogating fields, providing microscopic insights for optimizing optoelectronic devices. American Chemical Society 2023-02-17 /pmc/articles/PMC9999450/ /pubmed/36799492 http://dx.doi.org/10.1021/acs.nanolett.2c04795 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Fu, Shuai Jia, Xiaoyu Hassan, Aliaa S. Zhang, Heng Zheng, Wenhao Gao, Lei Di Virgilio, Lucia Krasel, Sven Beljonne, David Tielrooij, Klaas-Jan Bonn, Mischa Wang, Hai I. Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces |
title | Reversible Electrical Control of Interfacial Charge
Flow across van der Waals Interfaces |
title_full | Reversible Electrical Control of Interfacial Charge
Flow across van der Waals Interfaces |
title_fullStr | Reversible Electrical Control of Interfacial Charge
Flow across van der Waals Interfaces |
title_full_unstemmed | Reversible Electrical Control of Interfacial Charge
Flow across van der Waals Interfaces |
title_short | Reversible Electrical Control of Interfacial Charge
Flow across van der Waals Interfaces |
title_sort | reversible electrical control of interfacial charge
flow across van der waals interfaces |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999450/ https://www.ncbi.nlm.nih.gov/pubmed/36799492 http://dx.doi.org/10.1021/acs.nanolett.2c04795 |
work_keys_str_mv | AT fushuai reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT jiaxiaoyu reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT hassanaliaas reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT zhangheng reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT zhengwenhao reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT gaolei reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT divirgiliolucia reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT kraselsven reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT beljonnedavid reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT tielrooijklaasjan reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT bonnmischa reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces AT wanghaii reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces |