Cargando…

Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces

[Image: see text] Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron–hole pairs across the vdW interface is essential for optoelectr...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Shuai, Jia, Xiaoyu, Hassan, Aliaa S., Zhang, Heng, Zheng, Wenhao, Gao, Lei, Di Virgilio, Lucia, Krasel, Sven, Beljonne, David, Tielrooij, Klaas-Jan, Bonn, Mischa, Wang, Hai I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999450/
https://www.ncbi.nlm.nih.gov/pubmed/36799492
http://dx.doi.org/10.1021/acs.nanolett.2c04795
_version_ 1784903663653748736
author Fu, Shuai
Jia, Xiaoyu
Hassan, Aliaa S.
Zhang, Heng
Zheng, Wenhao
Gao, Lei
Di Virgilio, Lucia
Krasel, Sven
Beljonne, David
Tielrooij, Klaas-Jan
Bonn, Mischa
Wang, Hai I.
author_facet Fu, Shuai
Jia, Xiaoyu
Hassan, Aliaa S.
Zhang, Heng
Zheng, Wenhao
Gao, Lei
Di Virgilio, Lucia
Krasel, Sven
Beljonne, David
Tielrooij, Klaas-Jan
Bonn, Mischa
Wang, Hai I.
author_sort Fu, Shuai
collection PubMed
description [Image: see text] Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron–hole pairs across the vdW interface is essential for optoelectronic applications. Previous studies have unveiled the critical role of defects in trapping photogenerated charge carriers to modulate the photoconductive gain for photodetection. However, the nature and role of defects in tuning interfacial charge carrier dynamics have remained elusive. Here, we investigate the nonequilibrium charge dynamics at the graphene–WS(2) vdW interface under electrochemical gating by operando optical-pump terahertz-probe spectroscopy. We report full control over charge separation states and thus photogating field direction by electrically tuning the defect occupancy. Our results show that electron occupancy of the two in-gap states, presumably originating from sulfur vacancies, can account for the observed rich interfacial charge transfer dynamics and electrically tunable photogating fields, providing microscopic insights for optimizing optoelectronic devices.
format Online
Article
Text
id pubmed-9999450
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-99994502023-03-11 Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces Fu, Shuai Jia, Xiaoyu Hassan, Aliaa S. Zhang, Heng Zheng, Wenhao Gao, Lei Di Virgilio, Lucia Krasel, Sven Beljonne, David Tielrooij, Klaas-Jan Bonn, Mischa Wang, Hai I. Nano Lett [Image: see text] Bond-free integration of two-dimensional (2D) materials yields van der Waals (vdW) heterostructures with exotic optical and electronic properties. Manipulating the splitting and recombination of photogenerated electron–hole pairs across the vdW interface is essential for optoelectronic applications. Previous studies have unveiled the critical role of defects in trapping photogenerated charge carriers to modulate the photoconductive gain for photodetection. However, the nature and role of defects in tuning interfacial charge carrier dynamics have remained elusive. Here, we investigate the nonequilibrium charge dynamics at the graphene–WS(2) vdW interface under electrochemical gating by operando optical-pump terahertz-probe spectroscopy. We report full control over charge separation states and thus photogating field direction by electrically tuning the defect occupancy. Our results show that electron occupancy of the two in-gap states, presumably originating from sulfur vacancies, can account for the observed rich interfacial charge transfer dynamics and electrically tunable photogating fields, providing microscopic insights for optimizing optoelectronic devices. American Chemical Society 2023-02-17 /pmc/articles/PMC9999450/ /pubmed/36799492 http://dx.doi.org/10.1021/acs.nanolett.2c04795 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Fu, Shuai
Jia, Xiaoyu
Hassan, Aliaa S.
Zhang, Heng
Zheng, Wenhao
Gao, Lei
Di Virgilio, Lucia
Krasel, Sven
Beljonne, David
Tielrooij, Klaas-Jan
Bonn, Mischa
Wang, Hai I.
Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces
title Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces
title_full Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces
title_fullStr Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces
title_full_unstemmed Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces
title_short Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces
title_sort reversible electrical control of interfacial charge flow across van der waals interfaces
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999450/
https://www.ncbi.nlm.nih.gov/pubmed/36799492
http://dx.doi.org/10.1021/acs.nanolett.2c04795
work_keys_str_mv AT fushuai reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT jiaxiaoyu reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT hassanaliaas reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT zhangheng reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT zhengwenhao reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT gaolei reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT divirgiliolucia reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT kraselsven reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT beljonnedavid reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT tielrooijklaasjan reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT bonnmischa reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces
AT wanghaii reversibleelectricalcontrolofinterfacialchargeflowacrossvanderwaalsinterfaces