Cargando…

Single-Molecule Sizing through Nanocavity Confinement

[Image: see text] An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine t...

Descripción completa

Detalles Bibliográficos
Autores principales: Jacquat, Raphaël P. B., Krainer, Georg, Peter, Quentin A. E., Babar, Ali Nawaz, Vanderpoorten, Oliver, Xu, Catherine K., Welsh, Timothy J., Kaminski, Clemens F., Keyser, Ulrich F., Baumberg, Jeremy J., Knowles, Tuomas P. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999452/
https://www.ncbi.nlm.nih.gov/pubmed/36826991
http://dx.doi.org/10.1021/acs.nanolett.1c04830
_version_ 1784903664120365056
author Jacquat, Raphaël P. B.
Krainer, Georg
Peter, Quentin A. E.
Babar, Ali Nawaz
Vanderpoorten, Oliver
Xu, Catherine K.
Welsh, Timothy J.
Kaminski, Clemens F.
Keyser, Ulrich F.
Baumberg, Jeremy J.
Knowles, Tuomas P. J.
author_facet Jacquat, Raphaël P. B.
Krainer, Georg
Peter, Quentin A. E.
Babar, Ali Nawaz
Vanderpoorten, Oliver
Xu, Catherine K.
Welsh, Timothy J.
Kaminski, Clemens F.
Keyser, Ulrich F.
Baumberg, Jeremy J.
Knowles, Tuomas P. J.
author_sort Jacquat, Raphaël P. B.
collection PubMed
description [Image: see text] An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine their hydrodynamic radii. Using theoretical modeling and simulations, we show that the residence time of particles within nanocavities above a critical time scale depends on the diffusion coefficient of the particle, which allows the estimation of the particle’s size. We demonstrate this approach experimentally through the measurement of particle residence times within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates, and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics.
format Online
Article
Text
id pubmed-9999452
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-99994522023-03-11 Single-Molecule Sizing through Nanocavity Confinement Jacquat, Raphaël P. B. Krainer, Georg Peter, Quentin A. E. Babar, Ali Nawaz Vanderpoorten, Oliver Xu, Catherine K. Welsh, Timothy J. Kaminski, Clemens F. Keyser, Ulrich F. Baumberg, Jeremy J. Knowles, Tuomas P. J. Nano Lett [Image: see text] An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine their hydrodynamic radii. Using theoretical modeling and simulations, we show that the residence time of particles within nanocavities above a critical time scale depends on the diffusion coefficient of the particle, which allows the estimation of the particle’s size. We demonstrate this approach experimentally through the measurement of particle residence times within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates, and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics. American Chemical Society 2023-02-24 /pmc/articles/PMC9999452/ /pubmed/36826991 http://dx.doi.org/10.1021/acs.nanolett.1c04830 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Jacquat, Raphaël P. B.
Krainer, Georg
Peter, Quentin A. E.
Babar, Ali Nawaz
Vanderpoorten, Oliver
Xu, Catherine K.
Welsh, Timothy J.
Kaminski, Clemens F.
Keyser, Ulrich F.
Baumberg, Jeremy J.
Knowles, Tuomas P. J.
Single-Molecule Sizing through Nanocavity Confinement
title Single-Molecule Sizing through Nanocavity Confinement
title_full Single-Molecule Sizing through Nanocavity Confinement
title_fullStr Single-Molecule Sizing through Nanocavity Confinement
title_full_unstemmed Single-Molecule Sizing through Nanocavity Confinement
title_short Single-Molecule Sizing through Nanocavity Confinement
title_sort single-molecule sizing through nanocavity confinement
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999452/
https://www.ncbi.nlm.nih.gov/pubmed/36826991
http://dx.doi.org/10.1021/acs.nanolett.1c04830
work_keys_str_mv AT jacquatraphaelpb singlemoleculesizingthroughnanocavityconfinement
AT krainergeorg singlemoleculesizingthroughnanocavityconfinement
AT peterquentinae singlemoleculesizingthroughnanocavityconfinement
AT babaralinawaz singlemoleculesizingthroughnanocavityconfinement
AT vanderpoortenoliver singlemoleculesizingthroughnanocavityconfinement
AT xucatherinek singlemoleculesizingthroughnanocavityconfinement
AT welshtimothyj singlemoleculesizingthroughnanocavityconfinement
AT kaminskiclemensf singlemoleculesizingthroughnanocavityconfinement
AT keyserulrichf singlemoleculesizingthroughnanocavityconfinement
AT baumbergjeremyj singlemoleculesizingthroughnanocavityconfinement
AT knowlestuomaspj singlemoleculesizingthroughnanocavityconfinement