Cargando…
Single-Molecule Sizing through Nanocavity Confinement
[Image: see text] An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine t...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999452/ https://www.ncbi.nlm.nih.gov/pubmed/36826991 http://dx.doi.org/10.1021/acs.nanolett.1c04830 |
_version_ | 1784903664120365056 |
---|---|
author | Jacquat, Raphaël P. B. Krainer, Georg Peter, Quentin A. E. Babar, Ali Nawaz Vanderpoorten, Oliver Xu, Catherine K. Welsh, Timothy J. Kaminski, Clemens F. Keyser, Ulrich F. Baumberg, Jeremy J. Knowles, Tuomas P. J. |
author_facet | Jacquat, Raphaël P. B. Krainer, Georg Peter, Quentin A. E. Babar, Ali Nawaz Vanderpoorten, Oliver Xu, Catherine K. Welsh, Timothy J. Kaminski, Clemens F. Keyser, Ulrich F. Baumberg, Jeremy J. Knowles, Tuomas P. J. |
author_sort | Jacquat, Raphaël P. B. |
collection | PubMed |
description | [Image: see text] An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine their hydrodynamic radii. Using theoretical modeling and simulations, we show that the residence time of particles within nanocavities above a critical time scale depends on the diffusion coefficient of the particle, which allows the estimation of the particle’s size. We demonstrate this approach experimentally through the measurement of particle residence times within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates, and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics. |
format | Online Article Text |
id | pubmed-9999452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99994522023-03-11 Single-Molecule Sizing through Nanocavity Confinement Jacquat, Raphaël P. B. Krainer, Georg Peter, Quentin A. E. Babar, Ali Nawaz Vanderpoorten, Oliver Xu, Catherine K. Welsh, Timothy J. Kaminski, Clemens F. Keyser, Ulrich F. Baumberg, Jeremy J. Knowles, Tuomas P. J. Nano Lett [Image: see text] An approach relying on nanocavity confinement is developed in this paper for the sizing of nanoscale particles and single biomolecules in solution. The approach, termed nanocavity diffusional sizing (NDS), measures particle residence times within nanofluidic cavities to determine their hydrodynamic radii. Using theoretical modeling and simulations, we show that the residence time of particles within nanocavities above a critical time scale depends on the diffusion coefficient of the particle, which allows the estimation of the particle’s size. We demonstrate this approach experimentally through the measurement of particle residence times within nanofluidic cavities using single-molecule confocal microscopy. Our data show that the residence times scale linearly with the sizes of nanoscale colloids, protein aggregates, and single DNA oligonucleotides. NDS thus constitutes a new single molecule optofluidic approach that allows rapid and quantitative sizing of nanoscale particles for potential applications in nanobiotechnology, biophysics, and clinical diagnostics. American Chemical Society 2023-02-24 /pmc/articles/PMC9999452/ /pubmed/36826991 http://dx.doi.org/10.1021/acs.nanolett.1c04830 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Jacquat, Raphaël P. B. Krainer, Georg Peter, Quentin A. E. Babar, Ali Nawaz Vanderpoorten, Oliver Xu, Catherine K. Welsh, Timothy J. Kaminski, Clemens F. Keyser, Ulrich F. Baumberg, Jeremy J. Knowles, Tuomas P. J. Single-Molecule Sizing through Nanocavity Confinement |
title | Single-Molecule
Sizing through Nanocavity Confinement |
title_full | Single-Molecule
Sizing through Nanocavity Confinement |
title_fullStr | Single-Molecule
Sizing through Nanocavity Confinement |
title_full_unstemmed | Single-Molecule
Sizing through Nanocavity Confinement |
title_short | Single-Molecule
Sizing through Nanocavity Confinement |
title_sort | single-molecule
sizing through nanocavity confinement |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999452/ https://www.ncbi.nlm.nih.gov/pubmed/36826991 http://dx.doi.org/10.1021/acs.nanolett.1c04830 |
work_keys_str_mv | AT jacquatraphaelpb singlemoleculesizingthroughnanocavityconfinement AT krainergeorg singlemoleculesizingthroughnanocavityconfinement AT peterquentinae singlemoleculesizingthroughnanocavityconfinement AT babaralinawaz singlemoleculesizingthroughnanocavityconfinement AT vanderpoortenoliver singlemoleculesizingthroughnanocavityconfinement AT xucatherinek singlemoleculesizingthroughnanocavityconfinement AT welshtimothyj singlemoleculesizingthroughnanocavityconfinement AT kaminskiclemensf singlemoleculesizingthroughnanocavityconfinement AT keyserulrichf singlemoleculesizingthroughnanocavityconfinement AT baumbergjeremyj singlemoleculesizingthroughnanocavityconfinement AT knowlestuomaspj singlemoleculesizingthroughnanocavityconfinement |