Cargando…

Aberrant lncRNA expression in patients with proliferative diabetic retinopathy: preliminary results from a single-center observational study

BACKGROUND: Diabetic retinopathy (DR) is a leading cause of blindness. Vision threat is particularly severe in patients with retinal neovascularization. However, little is known about the role of long noncoding RNAs (lncRNAs) in proliferative diabetic retinopathy (PDR). The goal of this study was to...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Lan, Zhou, Minwen, Wang, Xiaocong, Long, Xiaofeng, Ye, Meng, Yuan, Yuan, Tan, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999565/
https://www.ncbi.nlm.nih.gov/pubmed/36899334
http://dx.doi.org/10.1186/s12886-023-02817-4
Descripción
Sumario:BACKGROUND: Diabetic retinopathy (DR) is a leading cause of blindness. Vision threat is particularly severe in patients with retinal neovascularization. However, little is known about the role of long noncoding RNAs (lncRNAs) in proliferative diabetic retinopathy (PDR). The goal of this study was to identify lncRNAs involved in PDR. METHODS: We compared lncRNA expression profiles in the vitreous between patients with PDR and those with idiopathic macular hole (IMH) and between patients with PDR who had received anti-vascular endothelial growth factor (VEGF) therapy and those who had not. Vitreous samples from patients with PDR and IMH were screened for lncRNAs using microarray-based analysis, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to confirm the microarray results. Bioinformatic analysis was also performed. Moreover, the effect of anti-VEGF therapy was investigated in vitreous samples of patients with PDR treated with anti-VEGF therapy and those who were not. RESULTS: A total of 1067 differentially expressed noncoding RNA transcripts were found during screening in the vitreous humor of patients with PDR than in those with IMH. Five lncRNAs were subjected to qRT-PCR. RP11-573 J24.1, RP11-787B4.2, RP11-654G14.1, RP11-2A4.3, and RP11-502I4.3 were significantly downregulated; this was validated by the comparison using the microarray data. In addition, 835 differentially expressed noncoding RNA transcripts were found during screening in the vitreous humor of patients with PDR treated with anti-VEGF therapy compared with untreated PDR patients. RP4-631H13.2 was significantly upregulated, which is consistent with the trend of the microarray analysis. CONCLUSIONS: There were systemic expression differences in the vitreous at the microarray level between patients with PDR and those with IMH and between patients with PDR after anti-VEGF treatment and those that did not receive anti-VEGF treatment. LncRNAs identified in the vitreous humor may be a novel research field for PDR. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12886-023-02817-4.