-
201“…The numerical experiment confirmed that the CNN classification using nonlinear vibration images as the proposed procedure has more than 90% accuracy. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
202
-
203“…Mask R-CNN auto-segmented the TVC with considerably high accuracy. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
204por Zhang, Shuo, Wang, Jing, Pei, Lulu, Liu, Kai, Gao, Yuan, Fang, Hui, Zhang, Rui, Zhao, Lu, Sun, Shilei, Wu, Jun, Song, Bo, Dai, Honghua, Li, Runzhi, Xu, Yuming“…CONCLUSIONS: We construct a backbone causal CNN to simulate the neurologist process of that could enhance the internal interpretability. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
205por Sirshar, Mehreen, Paracha, Muhammad Faheem Khalil, Akram, Muhammad Usman, Alghamdi, Norah Saleh, Zaidi, Syeda Zainab Yousuf, Fatima, TatheerEnlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
206por Sunanthini, V., Deny, J., Govinda Kumar, E., Vairaprakash, S., Govindan, Petchinathan, Sudha, S., Muneeswaran, V., Thilagaraj, M.Enlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
207
-
208“…In this research, a Contour-aware Attention Decoder CNN has been proposed to precisely segment COVID-19 infected tissues in a very effective way. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
209“…To verify the effect of network classification, the classification accuracy on COVIDx-CT dataset is 96.7%, which is obviously higher than that of typical CNN network (ResNet-152) (95.2%) and Transformer network (Deit-B) (75.8%). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
210“…We used viral vectors to decrease the level of CNN2 in the SW480 colon cancer cell line and found that silencing of CNN2 inhibited cell invasion. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
211
-
212por Li, YueyingEnlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
213“…There has been significant interest in using Convolutional Neural Networks (CNN) based methods for Automated Vehicular Surveillance (AVS) systems. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
214
-
215“…Through model comparison experiments, the results show that the hemolysis image detection method based on the GAN-CNN-ELM model is better than GAN-CNN, GAN-ELM, GAN-ELM-L1, GAN-SVM, GAN-CNN-SVM, and CNN-ELM in accuracy and speed, and the accuracy rate is 98.91%.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
216“…First, the method provides a reliable sample dataset for the recognition model through image data enhancement and other operations; the corresponding pest image recognition and analysis model is constructed based on VGG16 and Inception-ResNet-v2 transfer learning network to ensure the completeness of the recognition and analysis model; then, using the idea of an integrated algorithm, the two improved CNN series pest image recognition and analysis models are effectively fused to improve the accuracy of the model for crop pest recognition and classification. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
217“…Our framework, called CNN-XG, is mainly composed of two parts: a feature extractor CNN is used to automatically extract features from sequences and predictor XGBoost is applied to predict features extracted after convolution. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
218“…Conclusion: The ACP-MCAM can integrate multi-kernel CNN and self-attention mechanism, which outperforms the previous model in identifying anticancer peptides. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
219“…Therefore, this article proposed a domain adaptive and lightweight framework for FD based on a one-dimension convolutional neural network (1D-CNN). Particularly, 1D-CNN is designed with a structure of autoencoder to extract the rich, robust hidden features with less noise from source and target data. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
220por Tiwari, Pallavi, Pant, Bhaskar, Elarabawy, Mahmoud M., Abd-Elnaby, Mohammed, Mohd, Noor, Dhiman, Gaurav, Sharma, Subhash“…Recent developments in image classification technology have made great strides, and the most popular and better approach that has been considered best in this area is CNN, and therefore, CNN is used for the brain tumor classification issue in this paper. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto