Mostrando 281 - 300 Resultados de 8,800 Para Buscar '"CNN"', tiempo de consulta: 0.22s Limitar resultados
  1. 281
    por Liu, Tianrui, Stathaki, Tania
    Publicado 2018
    “…Convolutional neural networks (CNN) have enabled significant improvements in pedestrian detection owing to the strong representation ability of the CNN features. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 282
    “…We also compared our methods with other CNN and traditional machine learning models. We further analyzed and discussed the characteristics and strengths of our bi-stream CNN model. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 283
    “…However, earlier methods based on convolutional neural networks (CNN) have focused primarily on improving accuracy while ignoring the complexity of the model. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 284
    “…We designed the CNN model to support contextually-aware services of the IoT platform and to perform experiments for learning accuracy of the designed CNN model using dataset of images acquired from the robot. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 285
    “…TRHD-CNN adopts divide and conquer strategy to extract characteristics from two types of data source independently. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 286
    por Li, Hongmin, Shi, Luping
    Publicado 2019
    “…Feature representations from hierarchical convolutional layers of a pre-trained CNN are used to represent the appearance of the rate encoded event-stream object. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 287
    “…The results of the experiment indicate that the prediction performance of the proposed CNN-LSTM model can outperform the pure CNN or LSTM model in both end-of-season and in-season. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 288
    “…We present a multi-column CNN-based model for emotion recognition from EEG signals. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 289
    “…We combined two approaches (separable convolutions and SVD) to reduce model parameter numbers and weight matrices of these very deep CNN-based models. Using our combined method (separable convolution and SVD) reduced the weight matrix by up to 95% without affecting pixel-wise accuracy. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 290
  11. 291
    “…MS-CNN, which can efficiently incorporate both the local and global texture information of the images, has been shown to evidently improve the segmentation accuracy of the proposed graph-cuts based method. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 292
    “…Therefore, we designed a compact Convolution Neural Network (CNN) model, which not only improves the classification accuracy but also reduces the number of parameters in the model. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 293
    “…The method described in this article uses a CNN model to detect matching points and RANSAC algorithm to correct feature’s correlation. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 294
    “…The goal of this study was to quantitatively analyze the functional filtering bleb size with Mask R-CNN. METHODS: This observational study employed eighty-three images of post-trabeculectomy functional filtering blebs. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 295
    “…Finally, character recognition is carried out using CNN. The proposed algorithm is applied to 600 scene images of different writing styles and colors, and we have obtained 89.25% accuracy in text detection and 94.50% accuracy in the extraction of characters. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 296
    “…The experimental results show that the 3D-CNN has better generalization capability than other classification models, and this model is applicable to the feature input of the spatial and spectral domains. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 297
    “…The Adam optimizer had the best accuracy of 99.2% in enhancing the CNN ability in classification and segmentation.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 298
    por Shi, Jingyi, Chen, Diansheng, Wang, Min
    Publicado 2020
    “…We build a convolutional neural network (CNN) with a class activation mapping (CAM) method, which could highlight the class-specific region in the data and obtain a hot map of the fall data. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 299
    “…The proposed CNN can be executed on medium-end laptop without GPU acceleration in 7.81 s: this is impossible for methods requiring GPU acceleration. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 300
    “…These data were then applied to a convolutional neural network (CNN) algorithm to create an object behavior type classifier that can classify the behavior types of objects into “Fall” and “ADL.” …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS