-
281“…Convolutional neural networks (CNN) have enabled significant improvements in pedestrian detection owing to the strong representation ability of the CNN features. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
282por Feng, Bing, Hoskins, William, Zhang, Yan, Meng, Zibo, Samuels, David C., Wang, Jiandong, Xia, Ruofan, Liu, Chao, Tang, Jijun, Guo, Yan“…We also compared our methods with other CNN and traditional machine learning models. We further analyzed and discussed the characteristics and strengths of our bi-stream CNN model. …”
Publicado 2018
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
283“…However, earlier methods based on convolutional neural networks (CNN) have focused primarily on improving accuracy while ignoring the complexity of the model. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
284“…We designed the CNN model to support contextually-aware services of the IoT platform and to perform experiments for learning accuracy of the designed CNN model using dataset of images acquired from the robot. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
285“…TRHD-CNN adopts divide and conquer strategy to extract characteristics from two types of data source independently. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
286“…Feature representations from hierarchical convolutional layers of a pre-trained CNN are used to represent the appearance of the rate encoded event-stream object. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
287“…The results of the experiment indicate that the prediction performance of the proposed CNN-LSTM model can outperform the pure CNN or LSTM model in both end-of-season and in-season. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
288“…We present a multi-column CNN-based model for emotion recognition from EEG signals. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
289“…We combined two approaches (separable convolutions and SVD) to reduce model parameter numbers and weight matrices of these very deep CNN-based models. Using our combined method (separable convolution and SVD) reduced the weight matrix by up to 95% without affecting pixel-wise accuracy. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
290
-
291por Li, Lei, Wu, Fuping, Yang, Guang, Xu, Lingchao, Wong, Tom, Mohiaddin, Raad, Firmin, David, Keegan, Jennifer, Zhuang, Xiahai“…MS-CNN, which can efficiently incorporate both the local and global texture information of the images, has been shown to evidently improve the segmentation accuracy of the proposed graph-cuts based method. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
292“…Therefore, we designed a compact Convolution Neural Network (CNN) model, which not only improves the classification accuracy but also reduces the number of parameters in the model. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
293por Rodríguez-Santiago, Armando Levid, Arias-Aguilar, José Anibal, Petrilli-Barceló, Alberto Elías, Miranda-Luna, Rosebet“…The method described in this article uses a CNN model to detect matching points and RANSAC algorithm to correct feature’s correlation. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
294por Wang, Tao, Zhong, Lei, Yuan, Jing, Wang, Ting, Yin, Shiyi, Sun, Yi, Liu, Xing, Liu, Xun, Ling, Shiqi“…The goal of this study was to quantitatively analyze the functional filtering bleb size with Mask R-CNN. METHODS: This observational study employed eighty-three images of post-trabeculectomy functional filtering blebs. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
295“…Finally, character recognition is carried out using CNN. The proposed algorithm is applied to 600 scene images of different writing styles and colors, and we have obtained 89.25% accuracy in text detection and 94.50% accuracy in the extraction of characters. …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
296por Li, Kai-Chun, Lu, Ming-Yen, Nguyen, Hong Thai, Feng, Shih-Wei, Artemkina, Sofya B., Fedorov, Vladimir E., Wang, Hsiang-Chen“…The experimental results show that the 3D-CNN has better generalization capability than other classification models, and this model is applicable to the feature input of the spatial and spectral domains. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
297por Yaqub, Muhammad, Feng, Jinchao, Zia, M. Sultan, Arshid, Kaleem, Jia, Kebin, Rehman, Zaka Ur, Mehmood, Atif“…The Adam optimizer had the best accuracy of 99.2% in enhancing the CNN ability in classification and segmentation.…”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
298“…We build a convolutional neural network (CNN) with a class activation mapping (CAM) method, which could highlight the class-specific region in the data and obtain a hot map of the fall data. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
299“…The proposed CNN can be executed on medium-end laptop without GPU acceleration in 7.81 s: this is impossible for methods requiring GPU acceleration. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
300“…These data were then applied to a convolutional neural network (CNN) algorithm to create an object behavior type classifier that can classify the behavior types of objects into “Fall” and “ADL.” …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto