-
341“…The experimental results show that the F1 score of CNN-FWS is 0.902, and the Recall of CNN-FWS is 0.889. (4) Conclusion: CNN-FWS absorbs the advantages of convolutional neural networks (CNN) to obtain three parts of different spatial information and enrich the learned features. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
342“…The proposed model combines the learning advantages of BiLSTM and CNN. The overall accuracy of text emotion analysis has been greatly improved, with an accuracy of 0.94 and an improvement of 8.51% compared with the single CNN model.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
343“…Convolutional neural network (CNN) is used to automatically extract features of time-frequency images, so as to realize the classification of various fault modes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
344“…However, CNN may not be suitable for all bearing fault classifiers. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
345por Molaei, Sepideh, Ghorbani, Niloofar, Dashtiahangar, Fatemeh, Peivandi, Mohammad, Pourasad, Yaghoub, Esmaeili, MonaEnlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
346“…The Fast-Convolutional Neural Network (Faster R-CNN) algorithm is improved, and a surface defect detection algorithm based on the improved Faster R-CNN is proposed. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
347
-
348
-
349“…DMFF-CNN uses the gram angular field (GAF) image coding and intelligence quotient (IQ) data combined with CNN. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
350Multi-Class CNN for Classification of Multispectral and Autofluorescence Skin Lesion Clinical Imagespor Lihacova, Ilze, Bondarenko, Andrey, Chizhov, Yuriy, Uteshev, Dilshat, Bliznuks, Dmitrijs, Kiss, Norbert, Lihachev, AlexeyEnlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
351
-
352por Rustam, Furqan, Ishaq, Abid, Munir, Kashif, Almutairi, Mubarak, Aslam, Naila, Ashraf, Imran“…This study solves this problem by proposing the novel use of feature extraction from a convolutional neural network (CNN). An ensemble model is designed where a CNN model is used to enlarge the feature set to train linear models including stochastic gradient descent classifier, logistic regression, and support vector machine that comprise the soft-voting based ensemble model. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
353por Kandhro, Irfan Ali, Uddin, Mueen, Hussain, Saddam, Chaudhery, Touseef Javed, Shorfuzzaman, Mohammad, Meshref, Hossam, Albalhaq, Maha, Alsaqour, Raed, Khalaf, Osamah Ibrahim“…As a result, to resolve the problem of facial expression recognition (FER) using convolutional neural networks (CNN), increasingly substantial efforts have been made in recent years. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
354
-
355“…For the problem of planned maintenance no longer meeting current pantograph maintenance requirements, a defect diagnosis system based on a combination of faster R-CNN neural networks is presented. The pantograph image features are extracted by introducing an alternative to the original feature extraction module that can extract deep-level image features and achieve feature reuse, and the data transformation operations such as image rotation and enhancement are used to expand the sample set in the experiment to enhance the detection effect. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
356“…This paper proposes an intelligent diagnosis method for rotating machinery faults based on improved variational mode decomposition (IVMD) and CNN to process the rotating machinery non-stationary signal. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
357por Hernández, Daryl, Jara, Nicolás, Araya, Mauricio, Durán, Roberto E., Buil-Aranda, Carlos“…We present a light, fast, and simple two-stage multiclass CNN architecture for promoter identification and classification. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
358“…Further the segmented portion was trained by Convolutional Neural Network (CNN) in order to classify the segmented region as normal or abnormal. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
359“…This paper proposes a classification method for HS and LiDAR data based on a dual-coupled CNN-GCN structure. The model can be divided into a coupled CNN and a coupled GCN. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
360“…To show the effectiveness of our proposed method, this paper evaluates our proposed method with actual state-of-the-art CNN models of VGGNet, ResNet and DenseNet under the CIFAR-10 dataset. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto