-
381
-
382“…This study integrated the advantages of convolutional neural network (CNN) feature extraction and the regression ability of random forest (RF) to propose a novel CNN-RF ensemble framework for PM2.5 concentration modeling. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
383“…The results show that our method could classify six ankle movements with relatively good accuracy (95.73%). The accuracy of CNN-LSTM, CNN, and LSTM models with sEMG features as input are all higher than that of corresponding models with raw sEMG as input. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
384
-
385“…To promote a deeper comprehension of potential radioactive isotope transport and ultimately synthesis for site evaluation purposes, we have efficiently tailored geospatial image processing using a convolutional neural network (CNN). We customized the CNN according to the intricate nature of the fracture geometries in the BCF, enabling the recognition process to be particularly sensitive to details and to interpret them in the correct tectonic context. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
386por Zhang, Ling, Wang, Xiaolu, Jiang, Jun, Xiao, Naian, Guo, Jiayang, Zhuang, Kailong, Li, Ling, Yu, Houqiang, Wu, Tong, Zheng, Ming, Chen, Duo“…The computational results confirm that the CNN-based model can obtain high classification accuracy, up to 87%. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
387“…The system comprises a high-speed camera and a pan-tilt galvanometer system, which can rapidly generate large-scale high-definition images of the wide monitored area. We developed a CNN-based hybrid tracking algorithm that can robustly track multiple high-speed moving objects simultaneously. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
388por Borré, Andressa, Seman, Laio Oriel, Camponogara, Eduardo, Stefenon, Stefano Frizzo, Mariani, Viviana Cocco, Coelho, Leandro dos Santos“…The application of the hybrid CNN-LSTM attention-based model, combined with the use of quantile regression to capture uncertainties, yielded superior results compared to traditional reference models. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
389“…To extract the spatial and temporal features contained in the multisensor fusion data, we designed an improved CNN-LSTM model. In addition, three data fusion algorithms were studied and investigated. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
390“…The proposed method uses a multimodal approach based on a CNN architecture that combines text data to achieve a high accuracy rate of 99.4%. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
391
-
392por Zaman, Wasim, Ahmad, Zahoor, Siddique, Muhammad Farooq, Ullah, Niamat, Kim, Jong-Myon“…These new scalograms are then provided to a convolutional neural network (CNN) for the fault classification of centrifugal pumps. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
393“…A case study on resistance spot welding, a popular lightweight metal-joining process for automotive manufacturing, compared the performance of (1) a Di-CNN with adaptive weights (the proposed model), (2) a Di-CNN without adaptive weights, and (3) a conventional CNN. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
394por Hosseini, Mohammad Saleh Khajeh, Firoozabadi, Seyed Mohammad, Badie, Kambiz, Azadfallah, Parviz“…A pre-trained convolutional neural network (CNN) was used to extract emotion-related features from the raw EEG data. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
395Applying Machine Learning to Healthcare Operations Management: CNN-Based Model for Malaria Diagnosis“…The performance of this CNN model was further validated through the k-fold cross-validation test. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
396
-
397Publicado 2023“…Thirdly, Bi-LSTM is connected to 3D CNN for classification. Finally CBAM is introduced into the model. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
398“…To overcome this challenge, this paper proposes a Plant-CNN-ViT ensemble model that combines the strengths of four pre-trained models: Vision Transformer, ResNet-50, DenseNet-201, and Xception. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
399
-
400