Mostrando 381 - 400 Resultados de 8,800 Para Buscar '"CNN"', tiempo de consulta: 0.18s Limitar resultados
  1. 381
  2. 382
    “…This study integrated the advantages of convolutional neural network (CNN) feature extraction and the regression ability of random forest (RF) to propose a novel CNN-RF ensemble framework for PM2.5 concentration modeling. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 383
    “…The results show that our method could classify six ankle movements with relatively good accuracy (95.73%). The accuracy of CNN-LSTM, CNN, and LSTM models with sEMG features as input are all higher than that of corresponding models with raw sEMG as input. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 384
  5. 385
    “…To promote a deeper comprehension of potential radioactive isotope transport and ultimately synthesis for site evaluation purposes, we have efficiently tailored geospatial image processing using a convolutional neural network (CNN). We customized the CNN according to the intricate nature of the fracture geometries in the BCF, enabling the recognition process to be particularly sensitive to details and to interpret them in the correct tectonic context. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 386
  7. 387
    “…The system comprises a high-speed camera and a pan-tilt galvanometer system, which can rapidly generate large-scale high-definition images of the wide monitored area. We developed a CNN-based hybrid tracking algorithm that can robustly track multiple high-speed moving objects simultaneously. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 388
    “…The application of the hybrid CNN-LSTM attention-based model, combined with the use of quantile regression to capture uncertainties, yielded superior results compared to traditional reference models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 389
    “…To extract the spatial and temporal features contained in the multisensor fusion data, we designed an improved CNN-LSTM model. In addition, three data fusion algorithms were studied and investigated. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 390
    por Deshai, N., Bhaskara Rao, B.
    Publicado 2023
    “…The proposed method uses a multimodal approach based on a CNN architecture that combines text data to achieve a high accuracy rate of 99.4%. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 391
  12. 392
    “…These new scalograms are then provided to a convolutional neural network (CNN) for the fault classification of centrifugal pumps. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 393
    “…A case study on resistance spot welding, a popular lightweight metal-joining process for automotive manufacturing, compared the performance of (1) a Di-CNN with adaptive weights (the proposed model), (2) a Di-CNN without adaptive weights, and (3) a conventional CNN. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 394
    “…A pre-trained convolutional neural network (CNN) was used to extract emotion-related features from the raw EEG data. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 395
    por Cho, Young Sik, Hong, Paul C.
    Publicado 2023
    “…The performance of this CNN model was further validated through the k-fold cross-validation test. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 396
  17. 397
    Publicado 2023
    “…Thirdly, Bi-LSTM is connected to 3D CNN for classification. Finally CBAM is introduced into the model. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 398
    “…To overcome this challenge, this paper proposes a Plant-CNN-ViT ensemble model that combines the strengths of four pre-trained models: Vision Transformer, ResNet-50, DenseNet-201, and Xception. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 399
  20. 400
Herramientas de búsqueda: RSS