-
461“…To overcome these challenges, a ship detection method based on multiscale feature extraction and lightweight CNN is proposed. Firstly, the candidate-region extraction method, based on a multiscale model, can cover the potential targets under different backgrounds accurately. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
462“…In this paper, we mainly focus on the second step comprising the detection of anomalies within solar panels, which is done using a region-based convolutional neural network (CNN). Experiments on six different PV sites with different specifications and a variety of defects demonstrate that our anomaly detector achieves a true positive rate or recall of more than 90% for a false positive rate of around 2% to 3% tested on a dataset containing nearly 9000 solar panels. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
463por Liu, Quan, Li, Mengnan, Yin, Chaoyue, Qian, Guoming, Meng, Wei, Ai, Qingsong, Hu, Jiwei“…A convolutional neural network (CNN)-based hand activity prediction method is proposed, which utilizes motion data to estimate hand grasping actions. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
464“…In this study, a CNN is utilized within a Double Deep Q-Network (DDQN) to outperform the S&P 500 Index returns, and also analyze how the system trades. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
465“…AIMS: To assess the volume and accessibility of motility lab testing in Canada. METHODS: The CNN developed a questionnaire directed at the scope, volume and accessibility of pH/motility testing in Canadian labs. …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
466“…In this paper, we present the Single Shot Corrective CNN (SSC-CNN) to tackle the problem of enforcing anatomical correctness at the architecture level. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
467por Wilm, Frauke, Benz, Michaela, Bruns, Volker, Baghdadlian, Serop, Dexl, Jakob, Hartmann, David, Kuritcyn, Petr, Weidenfeller, Martin, Wittenberg, Thomas, Merkel, Susanne, Hartmann, Arndt, Eckstein, Markus, Geppert, Carol ImmanuelEnlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
468por Chen, Guo-Hong, Ni, Jie, Chen, Zhuo, Huang, Hao, Sun, Yun-Lei, Ip, Wai Hung, Yung, Kai Leung“…To reduce machine time and to apply the detection methods in common scenarios, the CNN structure with preprocessed image data needs to be simplified. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
469por Rajawat, Neha, Hada, Bharat Singh, Meghawat, Mayank, Lalwani, Soniya, Kumar, Rajesh“…This lightweight convolution neural network (CNN) based approach has achieved an accuracy of 97.5% and an F1-score of 97.91%. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
470por Gao, Jing“…A network intrusion detection method combining CNN and BiLSTM network is proposed. First, the KDD CUP 99 data set is preprocessed by using data extraction algorithm. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
471“…For this work, we collected the dataset from open-source data repository and then pre-process each X-ray images from each category such as covid X-ray images and non-covid X-ray images using various techniques such as filtering, edge detection, segmentation, etc., and then the pre-processed X-ray images are trained using CNN-Resnet18 network. Using PyTorch python package, the resnet-18 network layer is created which gives more accuracy than any other algorithm. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
472por Huang, Shiqi, Pu, Xuewen, Zhan, Xinke, Zhang, Yucheng, Dong, Ziqi, Huang, Jianshe“…To solve this problem, a new convolutional neural network (CNN) method based on wavelet and attention mechanism was proposed in this paper, called the WA-CNN algorithm. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
473por Lu, Weizhong, Chen, Xiaoyi, Zhang, Yu, Wu, Hongjie, Ding, Yijie, Shen, Jiawei, Guan, Shixuan, Li, Haiou“…In this paper, a deep learning framework based on parallel long and short-term memory(LSTM) and convolutional neural networks(CNN) was proposed to identify DNA-binding protein. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
474“…To better solve the above problems, this article proposes a hybrid model of sentiment classification, which is based on bidirectional encoder representations from transformers (BERT), bidirectional long short-term memory (BiLSTM) and a text convolution neural network (TextCNN) (BERT-BiLSTM-TextCNN). The experimental results show that (1) the hybrid model proposed in this article can better combine the advantages of BiLSTM and TextCNN; it not only captures local correlation while retaining context information but also has high accuracy and stability. (2) The BERT-BiLSTM-TextCNN model can extract important emotional information more flexibly in text and achieve multiclass classification tasks of emotions more accurately. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
475por Wang, Yuqi, Zhang, Lijun, Xia, Pan, Wang, Peng, Chen, Xianxiang, Du, Lidong, Fang, Zhen, Du, Mingyan“…Therefore, to overcome these shortcomings, an EEG-based novel deep neural network is proposed for emotion classification in this article. The proposed 2D CNN uses two convolutional kernels of different sizes to extract emotion-related features along both the time direction and the spatial direction. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
476“…In order to decrease the interference of these factors to fault diagnosis, a new method that automatically learns the features of the data combined with Markov transition field (MTF) and convolutional neural network (CNN) is proposed in this paper, namely MTF-CNN. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
477por Banerjee, Avinandan, Sarkar, Arya, Roy, Sayantan, Singh, Pawan Kumar, Sarkar, RamEnlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
478por Albashish, Dheeb“…This study proposes two ensemble learning techniques: E-CNN (product rule) and E-CNN (majority voting). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
479“…This framework is the fusion of Bidirectional Encoder Representations from Transformers (BERT) using the relationship between words in sentences for global text semantics, and Convolutional Neural Networks (CNN) using N-gram features for local text semantics. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
480“…It involves creation of a Deep learning based Convolutional Neural Network (CNN) using Keras (python library) and integrating the model with a front-end user interface for ease of use. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto