-
8561“…Compared with other models such as Yolo v3, SSD, and faster R–CNN, the mAP value of HE-Yolo is increased by 5.61%, 4.65%, and 0.57%, respectively, and the single-frame recognition time of HE-Yolo is only 0.045 s. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8562por Trägårdh, Elin, Enqvist, Olof, Ulén, Johannes, Hvittfeldt, Erland, Garpered, Sabine, Belal, Sarah Lindgren, Bjartell, Anders, Edenbrandt, Lars“…Suspected pelvic lymph node metastases were marked by three independent readers. A CNN was developed and trained on a training and validation group of 161 of the patients. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8563“…For more robust analysis, we compared ten CNN architectures for performance evaluation with and without enhancement approaches. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8564“…In this experiment, we used Rubberband baseline correction on the FT-NIR spectral data of fennel (Yumen, Gansu and Turpan, Xinjiang), using principal component analysis (PCA) for data dimensionality reduction, and selecting extreme learning machine (ELM), Convolutional Neural Network (CNN), recurrent neural network (RNN), Transformer, generative adversarial networks (GAN) and back propagation neural network (BPNN) classification model of the company realizes the classification of the sample origin. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8565por Tan, Mengyu, Chao, Wentao, Cheng, Jo-Ku, Zhou, Mo, Ma, Yiwen, Jiang, Xinyi, Ge, Jianping, Yu, Lian, Feng, Limin“…In this experiment, we selected YOLOv5 series models (anchor-based one-stage), Cascade R-CNN under feature extractor HRNet32 (anchor-based two-stage), and FCOS under feature extractors ResNet50 and ResNet101 (anchor-free one-stage). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8566“…Auto-segmentation model based on convolutional neural networks (CNN) was developed to delineate clinical target volumes (CTVs) and organs at risk (OARs) in cervical cancer radiotherapy. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8567“…Automated image segmentation was performed, where intraretinal (IRF), subretinal (SRF) fluid, pigment epithelial detachment (PED), hyperreflective foci, and the photoreceptor layer were delineated using a convolutional neural network (CNN). A set of respective quantitative imaging biomarkers were computed across an Early Treatment Diabetic Retinopathy Study (ETDRS) grid to describe the retinal pathomorphology spatially and its change after the first injection. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8568por Sathish Kumar, L., Routray, Sidheswar, Prabu, A. V., Rajasoundaran, S., Pandimurugan, V., Mukherjee, Amrit, Al-Numay, Mohammed S.“…The proposed DLAFM, Convolutional Neural Networks (CNN) associated Legacy Prediction Model for Health Indicator (LPHI) is developed to tune the CAFM principles. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8569por Datta, Gourav, Kundu, Souvik, Yin, Zihan, Lakkireddy, Ravi Teja, Mathai, Joe, Jacob, Ajey P., Beerel, Peter A., Jaiswal, Akhilesh R.“…Our solution includes a holistic algorithm-circuit co-design approach and the resulting P(2)M paradigm can be used as a drop-in replacement for embedding memory-intensive first few layers of convolutional neural network (CNN) models within foundry-manufacturable CMOS image sensor platforms. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8570por Jin, Tao, Jiang, Yancai, Mao, Boneng, Wang, Xing, Lu, Bo, Qian, Ji, Zhou, Hutao, Ma, Tieliang, Zhang, Yefei, Li, Sisi, Shi, Yun, Yao, Zhendong“…OBJECTIVE: Convolutional Neural Network(CNN) is increasingly being applied in the diagnosis of gastric cancer. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8571por Song, Xian, Xu, Qian, Li, Haiming, Fan, Qian, Zheng, Yefeng, Zhang, Qiang, Chu, Chunyan, Zhang, Zhicheng, Yuan, Chenglang, Ning, Munan, Bian, Cheng, Ma, Kai, Qu, Yi“…Spectral domain optical coherence tomography images were analyzed using a classification convolutional neural network (CNN) and a fully convolutional network (FCN) algorithm to extract six features involved in nAMD, including ellipsoid zone (EZ), external limiting membrane (ELM), intraretinal fluid (IRF), subretinal fluid (SRF), pigment epithelium detachment (PED), and subretinal hyperreflective material (SHRM). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8572por Lin, Xixiang, Yang, Feifei, Chen, Yixin, Chen, Xiaotian, Wang, Wenjun, Chen, Xu, Wang, Qiushuang, Zhang, Liwei, Guo, Huayuan, Liu, Bohan, Yu, Liheng, Pu, Haitao, Zhang, Peifang, Wu, Zhenzhou, Li, Xin, Burkhoff, Daniel, He, Kunlun“…Detection of RWMAs was achieved with 3D convolutional neural networks (CNN). Finally, DL model automatically measured the size of cardiac chambers and left ventricular ejection fraction. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8573“…Recently, the scenes in large high-resolution remote sensing (HRRS) datasets have been classified using convolutional neural network (CNN)-based methods. Such methods are well-suited for spatial feature extraction and can classify images with relatively high accuracy. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8574“…LEPR and HNRNPAO significantly affected NIR_11870_SUMO1, suggesting a potential regulatory relationship. Additionally, CNN1 may regulate NIR_5347_ING4, CNOT3 may regulate NIR_17935_DNAJC2, and DQX1 and LENG9 may regulate NIR_422_SLC5A1. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8575por Fatima, Rubia, Samad Shaikh, Naila, Riaz, Adnan, Ahmad, Sadique, El-Affendi, Mohammed A., Alyamani, Khaled A. Z., Nabeel, Muhammad, Ali Khan, Javed, Yasin, Affan, Latif, Rana M. Amir“…In the second experiment, we have used different state-of-the-art deep learning models and algorithms such as (i) Simple RNN; (ii) LSTM + Word Embedding; (iii) Bidirectional + Word Embedding; (iv) LSTM + CNN-1D; and (v) BERT. Furthermore, we have evaluated the performance of these models on all three datasets, e.g., veracity, stance, and sentiment. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8576“…RESULTS: Given these deficits, we propose EnsembleSplice, an ensemble learning architecture made up of four (4) distinct convolutional neural networks (CNN) model architecture combination that outperform existing splice site detection methods in the experimental evaluation metrics considered including the accuracies and error rates. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8577por Di Cosmo, Mariachiara, Fiorentino, Maria Chiara, Villani, Francesca Pia, Frontoni, Emanuele, Smerilli, Gianluca, Filippucci, Emilio, Moccia, Sara“…We collected and annotated a dataset of 246 images acquired in clinical practice involving 103 rheumatic patients, regardless of anatomical variants (bifid nerve, closed vessels). We developed a Mask R-CNN with two additional transposed layers at segmentation head to accurately segment the median nerve directly on transverse US images. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8578por Fanizzi, Annarita, Scognamillo, Giovanni, Nestola, Alessandra, Bambace, Santa, Bove, Samantha, Comes, Maria Colomba, Cristofaro, Cristian, Didonna, Vittorio, Di Rito, Alessia, Errico, Angelo, Palermo, Loredana, Tamborra, Pasquale, Troiano, Michele, Parisi, Salvatore, Villani, Rossella, Zito, Alfredo, Lioce, Marco, Massafra, Raffaella“…We proposed a transfer learning approach to extract quantitative imaging features from CT images by means of a pre-trained convolutional neural network (CNN) architecture. An optimal feature subset was then identified to train an SVM classifier. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8579por Wang, Linyan, Jiang, Zijing, Shao, An, Liu, Zhengyun, Gu, Renshu, Ge, Ruiquan, Jia, Gangyong, Wang, Yaqi, Ye, Juan“…METHODS: Patchcamelyon was used to select a convolutional neural network (CNN) as the backbone for our SSL-based model. This model was further developed in the ZJU-2 dataset for patch-level classification with both labeled and unlabeled images to test its diagnosis ability. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8580por Lin, Ting-Yi, Chen, Hung-Ruei, Huang, Hsin-Yi, Hsiao, Yu-Ier, Kao, Zih-Kai, Chang, Kao-Jung, Lin, Tai-Chi, Yang, Chang-Hao, Kao, Chung-Lan, Chen, Po-Yin, Huang, Shih-En, Hsu, Chih-Chien, Chou, Yu-Bai, Jheng, Ying-Chun, Chen, Shih-Jen, Chiou, Shih-Hwa, Hwang, De-Kuang“…RESULTS: We developed an OCT-based convolutional neuronal network (CNN) model that could classify two VA classes by the threshold of 0.50 (decimal notation) with an accuracy of 75.9%, a sensitivity of 78.9%, and an area under the ROC curve of 80.1% on the testing cohort. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto