-
8581por Kim, Gyuwon, Jeon, Jung Ho, Park, Keonhyeok, Kim, Sung Won, Kim, Do Hyun, Lee, Seungchul“…We quantitatively evaluate various convolutional neural network (CNN) models and demonstrate that our method accurately classifies in vitro MSC lines to high/low multilineage differentiating stress-enduring (MUSE) cells markers from multiple donors. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8582por Ye, Zhangxi, Guo, Qian, Wei, Jiahao, Zhang, Jian, Zhang, Houxi, Bian, Liming, Guo, Shijie, Zheng, Xueyan, Cao, Shijiang“…Under the same experimental conditions, compared with other current mainstream algorithms (YOLOv3, Faster R-CNN, and PP-YOLO), the average precision and F1-Score of the improved YOLOv5 also increased by 9.51-28.19 percentage points and 15.92-32.94 percentage points, respectively. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8583por Rigaud, Bastien, Weaver, Olena O., Dennison, Jennifer B., Awais, Muhammad, Anderson, Brian M., Chiang, Ting-Yu D., Yang, Wei T., Leung, Jessica W. T., Hanash, Samir M., Brock, Kristy K.“…ABSTRACT: Recently, convolutional neural network (CNN) models have been proposed to automate the assessment of breast density, breast cancer detection or risk stratification using single image modality. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8584por Song, Yool Bin, Jeong, Ho-Gul, Kim, Changgyun, Kim, Donghyun, Kim, Jaeyeon, Kim, Hyung Jun, Park, Wonse“…A total of 20,000 panoramic images including three diseases were used to develop and train a fast R-CNN model. To compare the performance of the developed model, two oral and maxillofacial radiologists (OMRs) and two general dentists (GDs) read 352 images, excluding the panoramic images used in development for soft tissue calcification diagnosis. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8585“…However, ensuring sufficient image resolution, maintaining class balance to achieve prediction quality and reducing the computational overhead of the deep neural architecture are still open to research due to the sophisticated CNN hierarchical architectures. To address these issues, we propose a number of methods: a multi-channel Data-Fusion Module (DFM), Neural Adaptive Patch (NAP) augmentation algorithm and re-weight class balancing (implemented in our PHR-CB experimental setup). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8586“…Furthermore, compared with the existing algorithms, such as CNN, LSTM, ViT, the proposed algorithm can make better defensive strategies for potentially dangerous scenes rarely seen or not seen in the training stage. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8587“…In this study, we addressed this issue from two perspectives: (i) we proposed a subject-transfer framework to use the knowledge learned from other subjects to compensate for a target subject’s limited data; (ii) we proposed a task-transfer framework in which the knowledge learned from a set of basic hand movements is used to classify more complex movements, which include a combination of mentioned basic movements. We introduced two CNN-based architectures for hand movement intention detection and a subject-transfer learning approach. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8588por Fang, Xiaohui, Li, Wen, Huang, Junjie, Li, Weimei, Feng, Qingzhong, Han, Yanlin, Ding, Xiaowei, Zhang, Jinping“…Experiments showed that, after transfer learning, the CNN models successfully diagnosed and classified LUS of CAP in children; of these, the Inception v3 achieves the best performance and may serve as a tool for the further research and development of AI automatic diagnosis LUS system in clinical applications. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8589por Li, Ying, Zheng, Xiaoxuan, Xie, Fangfang, Ye, Lin, Bignami, Elena, Tandon, Yasmeen K., Rodríguez, María, Gu, Yun, Sun, Jiayuan“…METHODS: This single-center observational study consecutively collected bronchoscopy videos from Shanghai Chest Hospital and segmented each video into 31 different anatomical locations to develop an AI-assisted system based on a convolutional neural network (CNN) model. We then designed a single-center trial to compare the accuracy of lumen recognition by bronchoscopists with and without the assistance of the AI system. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8590“…Due to the limitation of long-distance feature extraction, CNN (Convolutional Neural Network) is not conducive to mining the relationships among local features. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8591por Ali, Sikandar, Hussain, Ali, Bhattacharjee, Subrata, Athar, Ali, , Abdullah, Kim, Hee-Cheol“…In this study, a state-of-the-art CNN model densely connected squeeze convolutional neural network (DCSCNN) has been developed for the classification of X-ray images of COVID-19, pneumonia, normal, and lung opacity patients. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8592por Deng, Yinlong, Cai, Peiwei, Zhang, Li, Cao, Xiongcheng, Chen, Yequn, Jiang, Shiyan, Zhuang, Zhemin, Wang, Bin“…METHODS: Three-dimensional (3D) Convolutional Neural Network (CNN) was developed for myocardial segmentation and optical flow network for motion estimation. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8593por Liu, Dongdong, Liu, Bowen, Lin, Tao, Liu, Guangya, Yang, Guoyu, Qi, Dezhen, Qiu, Ye, Lu, Yuer, Yuan, Qinmei, Shuai, Stella C., Li, Xiang, Liu, Ou, Tang, Xiangdong, Shuai, Jianwei, Cao, Yuping, Lin, Hai“…METHODS: We proposed a multi-modal deep convolutional neural network (CNN) to evaluate the severity of depressive symptoms in real-time, which was based on the detection of patients’ facial expression and body movement from videos captured by ordinary cameras. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8594por Ullah, Naeem, Khan, Javed Ali, El-Sappagh, Shaker, El-Rashidy, Nora, Khan, Mohammad Sohail“…This study presents an effective COVID-19 detection and classification approach using the Shufflenet CNN by employing three types of images, i.e., chest radiograph, CT-scan, and ECG-trace images. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8595por Yan, Jianjun, Cai, Jinxing, Xu, Zi, Guo, Rui, Zhou, Wei, Yan, Haixia, Xu, Zhaoxia, Wang, Yiqin“…The experimental results showed that the tongue crack extraction and recognition results based on SBDL were better than Mask Region-based Convolutional Neural Network (Mask R-CNN), DeeplabV3+, U-Net, UNet++ and Semantic Segmentation with Adversarial Learning (SegAN). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8596por Guan, Yong-Jian, Yu, Chang-Qing, Qiao, Yan, Li, Li-Ping, You, Zhu-Hong, Ren, Zhong-Hao, Li, Yue-Chao, Pan, Jie“…Third, two kinds of features were entered into the convolution neural network (CNN) and deep neural network (DNN) to integrate features and predict potential target miRNAs for the drugs. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8597por Girardie, Océane, Bonneau, Mathieu, Billon, Yvon, Bailly, Jean, David, Ingrid, Canario, Laurianne“…The analysis of video images used the convolutional neural network (CNN) YOLO for sow detection and posture classification of 21 Large White and 22 Meishan primiparous sows housed in individual farrowing pens. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8598“…In the CRNN, 2D convolutional neural networks (CNN) layers are used to capture nonlinear local temporal and frequency information of the emotional speech. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8599por Peters, Bo, Blume-Werry, Gesche, Gillert, Alexander, Schwieger, Sarah, von Lukas, Uwe Freiherr, Kreyling, Juergen“…Here, we use a Convolutional Neural Network (CNN) for the automatic detection of roots in minirhizotron images and compare the performance of our RootDetector with human analysts with different levels of expertise. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8600por Xie, Li, Vaghefi, Ehsan, Yang, Song, Han, David, Marshall, John, Squirrell, David“…RESULTS: When assessed against the 5-step Simplified Severity Scale, the results generated by the ensemble of CNN’s achieved an accuracy of 80.43% (quadratic kappa 0.870). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto