-
8621“…Secondly, the features of Chinese radicals in Chinese EMRs extracted by CNN are added to the entity category recognition task. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8622por Raffy, Philippe, Pambrun, Jean-François, Kumar, Ashish, Dubois, David, Patti, Jay Waldron, Cairns, Robyn Alexandra, Young, Ryan“…For this purpose, a convolutional neural network (CNN)–based classifier was developed to identify body regions in CT and MRI studies. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8623por Kulus, Jakub, Kranc, Wiesława, Kulus, Magdalena, Dzięgiel, Piotr, Bukowska, Dorota, Mozdziak, Paul, Kempisty, Bartosz, Antosik, Paweł“…Genes with increased expression include (ITGA11, CNN1, CCl2, TPM2, ACTN1, VCAM-1, COL3A1, GSN, FRMD6, PLK2). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8624por Hennocq, Quentin, Bongibault, Thomas, Marlin, Sandrine, Amiel, Jeanne, Attie-Bitach, Tania, Baujat, Geneviève, Boutaud, Lucile, Carpentier, Georges, Corre, Pierre, Denoyelle, Françoise, Djate Delbrah, François, Douillet, Maxime, Galliani, Eva, Kamolvisit, Wuttichart, Lyonnet, Stanislas, Milea, Dan, Pingault, Véronique, Porntaveetus, Thantrira, Touzet-Roumazeille, Sandrine, Willems, Marjolaine, Picard, Arnaud, Rio, Marlène, Garcelon, Nicolas, Khonsari, Roman H.“…We extracted 48 patients completely independent of the training set, with only one photograph per ear per patient. After a CNN-(Convolutional Neural Network) based ear detection, the images were automatically landmarked. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8625por Huynh, Bao Ngoc, Groendahl, Aurora Rosvoll, Tomic, Oliver, Liland, Kristian Hovde, Knudtsen, Ingerid Skjei, Hoebers, Frank, van Elmpt, Wouter, Malinen, Eirik, Dale, Einar, Futsaether, Cecilia Marie“…Deep learning radiomics allows for a simpler workflow where images can be used directly as input to a convolutional neural network (CNN) with or without a pre-defined ROI. PURPOSE: The purpose of this study was to evaluate (i) conventional radiomics and (ii) deep learning radiomics for predicting overall survival (OS) and disease-free survival (DFS) for patients with head and neck squamous cell carcinoma (HNSCC) using pre-treatment (18)F-fluorodeoxuglucose positron emission tomography (FDG PET) and computed tomography (CT) images. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8626por Bağ, İrem, Bilgir, Elif, Bayrakdar, İbrahim Şevki, Baydar, Oğuzhan, Atak, Fatih Mehmet, Çelik, Özer, Orhan, Kaan“…METHODS: A total of 981 mixed images of pediatric patients for 9 different pediatric anatomic landmarks including maxillary sinus, orbita, mandibular canal, mental foramen, foramen mandible, incisura mandible, articular eminence, condylar and coronoid processes were labelled, the training was carried out using 2D convolutional neural networks (CNN) architectures, by giving 500 training epochs and Pytorch-implemented YOLO-v5 models were produced. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8627“…The proposed methods include the following core steps: subject records a small video of his/her fingertip by placing his/her finger on the rear camera of the smartphone, and the recorded video is pre-processed to extract the filtered and/or detrended video-photoplethysmography (vPPG) signal, which is then fed to custom-built convolutional neural networks (CNN), which eventually spit-out the vitals (PR, SpO2, and RR) as well as a single-lead ECG of the subject. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8628por Lee, Seulkee, Jeon, Uju, Lee, Ji Hyun, Kang, Seonyoung, Kim, Hyungjin, Lee, Jaejoon, Chung, Myung Jin, Cha, Hoon-Suk“…We developed a two-stage framework. First, the Faster R-CNN network extracted regions of interest (ROIs) to localize the sacroiliac joints. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8629por Luo, Qiushi, Zhu, Hongling, Zhu, Jiabing, Li, Yi, Yu, Yang, Lei, Lei, Lin, Fan, Zhou, Minghe, Cui, Longyan, Zhu, Tao, Li, Xuefei, Zuo, Huakun, Yang, Xiaoyun“…The model was based on a convolutional neural network (CNN) with a residual network to classify 8-lead ECG data into either the ASD or normal group. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8630“…The model architecture was initially refined through the MIV methodology to identify optimal input variables, whereupon five distinct predictive models were constructed, encompassing support vector regression (SVR), convolutional neural networks (CNN), backpropagation (BP) neural networks, artificial neural networks (ANN) and logistic regression (LR). …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8631por Worthington, Jenny, Bertani, Mariana, Chan, Hong-Lin, Gerrits, Bertran, Timms, John F“…MYC, MAP2K1, MAP2K3), autocrine growth factor signalling (VEGF, PDGF) and adhesion/cytoskeletal regulation (ZYX, THBS1, VCL, CNN3, ITGA2, ITGA3, NEDD9, TAGLN), linking them to the hyper-poliferative and altered adhesive phenotype of the ErbB2-overexpressing cells. …”
Publicado 2010
Enlace del recurso
Enlace del recurso
Enlace del recurso
Texto -
8632por Zheng, Guangyuan, Han, Guanghui, Soomro, Nouman Q., Ma, Linjuan, Zhang, Fuquan, Zhao, Yanfeng, Zhao, Xinming, Zhou, Chunwu“…We also trained our designed CNN-based fuzzy Co-forest on the labeled small sample set and obtained a preliminary classifier. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8633por Kim, Young-Gon, Cho, Yongwon, Wu, Chen-Jiang, Park, Sejin, Jung, Kyu-Hwan, Seo, Joon Beom, Lee, Hyun Joo, Hwang, Hye Jeon, Lee, Sang Min, Kim, Namkug“…Model performance of YOLO (You Only Look Once) v2 based eDenseYOLO showed a higher FOM (0.89; 0.85–0.93) than RetinaNet (0.89; 0.85–0.93) and atrous spatial pyramid pooling U-Net (0.85; 0.80–0.89). eDenseYOLO showed higher PPAs (97.87%) and CPPAs (95.80%) than Mask R-CNN, RetinaNet, ASSP U-Net, R1, and R2 (PPA: 96.52%, 94.23%, 95.04%, 96.55%, and 94.98%; CPPA: 93.18%, 89.09%, 90.57%, 93.33%, and 90.43%). …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8634Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fieldspor Gao, Junfeng, French, Andrew P., Pound, Michael P., He, Yong, Pridmore, Tony P., Pieters, Jan G.“…RESULTS: Here, we present an approach that develops a deep convolutional neural network (CNN) based on the tiny YOLOv3 architecture for C. sepium and sugar beet detection. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8635por Pereira, Rodolfo M., Bertolini, Diego, Teixeira, Lucas O., Silla, Carlos N., Costa, Yandre M.G.“…We observed that, texture is one of the main visual attributes of CXR images, our classification schema extract features using some well-known texture descriptors and also using a pre-trained CNN model. We also explored early and late fusion techniques in the schema in order to leverage the strength of multiple texture descriptors and base classifiers at once. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8636“…Predictive performance for CNN, SVM, and RF models was highest for image variants emphasizing topological elevation. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8637“…We recently developed DeepMito, a new method based on a 1-Dimensional Convolutional Neural Network (1D-CNN) architecture outperforming other similar approaches available in literature. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8638por Liugang, Gao, Kai, Xie, Chunying, Li, Zhengda, Lu, Jianfeng, Sui, Tao, Lin, Xinye, Ni, Jianrong, Dai“…Objective: To generate virtual non-contrast (VNC) computed tomography (CT) from intravenous enhanced CT through convolutional neural networks (CNN) and compare calculated dose among enhanced CT, VNC, and real non-contrast scanning. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8639por Zhao, Yue, Pan, Ziwei, Namburi, Sandeep, Pattison, Andrew, Posner, Atara, Balachander, Shiva, Paisie, Carolyn A., Reddi, Honey V, Rueter, Jens, Gill, Anthony J, Fox, Stephen, Raghav, Kanwal P.S., Flynn, William F, Tothill, Richard W., Li, Sheng, Karuturi, R. Krishna Murthy, George, Joshy“…Gene expression data was ordered by gene chromosomal coordinates as input to the 1D-CNN model, and the model utilizes multiple convolutional kernels with different configurations simultaneously to improve generality. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8640“…We evaluated the reproducibility of computer-aided detections (CADs) with a convolutional neural network (CNN) on chest radiographs (CXRs) of abnormal pulmonary patterns in patients, acquired within a short-term interval. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto