-
8641“…The distributed representations are taken as input of convolutional neural networks (CNN) and bidirectional long-term short-term memory networks (BiLSTM) to identify RBP binding sites. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8642“…The model includes 3 representation modules to encode clinical text snippet pairs at different levels: (1) character-level representation module based on convolutional neural network (CNN) to tackle the out-of-vocabulary problem in NLP; (2) sentence-level representation module that adopts a pretrained language model bidirectional encoder representation from transformers (BERT) to encode clinical text snippet pairs; and (3) entity-level representation module to model clinical entity information in clinical text snippets. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8643por Hilbert, Adam, Madai, Vince I., Akay, Ela M., Aydin, Orhun U., Behland, Jonas, Sobesky, Jan, Galinovic, Ivana, Khalil, Ahmed A., Taha, Abdel A., Wuerfel, Jens, Dusek, Petr, Niendorf, Thoralf, Fiebach, Jochen B., Frey, Dietmar, Livne, Michelle“…Methods: BRAVE-NET is a multiscale 3-D convolutional neural network (CNN) model developed on a dataset of 264 patients from three different studies enrolling patients with cerebrovascular diseases. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8644por Schmitt, Max, Maron, Roman Christoph, Hekler, Achim, Stenzinger, Albrecht, Hauschild, Axel, Weichenthal, Michael, Tiemann, Markus, Krahl, Dieter, Kutzner, Heinz, Utikal, Jochen Sven, Haferkamp, Sebastian, Kather, Jakob Nikolas, Klauschen, Frederick, Krieghoff-Henning, Eva, Fröhling, Stefan, von Kalle, Christof, Brinker, Titus Josef“…METHODS: We trained four separate convolutional neural networks (CNNs) to learn four variables using a data set of digitized whole slide melanoma images from five different institutes. For robustness, each CNN training and evaluation run was repeated multiple times, and a variable was only considered learnable if the lower bound of the 95% confidence interval of its mean balanced accuracy was above 50.0%. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8645“…Furthermore, we examined the contribution of a Max pooling layer in between the CNN and RNN and demonstrated that it improves the performance of all our models. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8646por Nikulin, Pavel, Hofheinz, Frank, Maus, Jens, Li, Yimin, Bütof, Rebecca, Lange, Catharina, Furth, Christian, Zschaeck, Sebastian, Kreissl, Michael C., Kotzerke, Jörg, van den Hoff, Jörg“…METHODS: Automatic delineation of the aortic lumen was performed with a convolutional neural network (CNN), using the U-Net architecture. A total of 946 FDG PET/CT scans from several sites were used for network training (N = 366) and testing (N = 580). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8647“…Furthermore, in order to explore the classification performance of Chinese eligibility criteria with our developed semantic categories, we implemented multiple classification algorithms, include four baseline machine learning algorithms (LR, NB, kNN, SVM), three deep learning algorithms (CNN, RNN, FastText) and two pre-trained language models (BERT, ERNIE). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8648por Jiang, Tao, Hu, Xiao-juan, Yao, Xing-hua, Tu, Li-ping, Huang, Jing-bin, Ma, Xu-xiang, Cui, Ji, Wu, Qing-feng, Xu, Jia-tuo“…CONCLUSIONS: Our research findings demonstrate various CNN models in the decision-making process for the selection of tongue image quality assessment and indicate that applying deep learning methods, specifically deep CNNs, to evaluate poor-quality tongue images is feasible.…”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8649por Zhan, Kecheng, Peng, Weihua, Xiong, Ying, Fu, Huhao, Chen, Qingcai, Wang, Xiaolong, Tang, Buzhou“…Convolution neural network (CNN)-Bidirectional Long Short Term Memory network (BiLSTM) and Bidirectional Encoder Representation from Transformers (BERT) were used to encode the input sentence, and a biaffine classifier was used to extract family history information. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8650por Pattarone, Gisela, Acion, Laura, Simian, Marina, Mertelsmann, Roland, Follo, Marie, Iarussi, Emmanuel“…Next, several classifiers were trained based on well-known convolutional neural networks (CNN) backbones to perform supervised classification using labels obtained from fluorescence microscopy images associated with each bright-field image. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8651por Jalali, Seyed Mohammad Jafar, Ahmadian, Milad, Ahmadian, Sajad, Khosravi, Abbas, Alazab, Mamoun, Nahavandi, Saeid“…After obtaining the optimized CNNs, it is also very critical to identify how to decrease the number of ensemble deep CNN classifiers to ensure the classification effectiveness. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8652“…We used GRAD-CAM activation map analysis to identify the sequences that activated our CNN-LSTM models and found short but distinct N-terminal regions in each taxon that was indicative of effector sequences. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8653por Verma, Amar Kumar, Vamsi, Inturi, Saurabh, Prerna, Sudha, Radhika, G.R., Sabareesh, S., Rajkumar“…The proposed research uses a wavelet-based convolution neural network architectures to detect SARS-nCoV. CNN is pre-trained on the ImageNet and trained end-to-end using thoracic X-ray images. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8654“…It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8655“…These 26 genes were mainly associated with extracellular matrix (ECM) and smooth muscle cells (SMCs) differentiation. Three DEGs, that is, CNN1 (calponin), α-actinin1 and myosin heavy chain 11 MYH11, were validated using qRT-PCR and Western blot analysis. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8656“…. • Design and reporting standards have improved in CNN research for radiological cancer diagnosis, though many opportunities remain for further progress. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8657“…Convolutional neural network-quantile regression (CNN-QR) forecasting model was used to predict pollutants concentrations from February 2020 to January 2021 and the changes in air pollutants were compared. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8658por Zhu, Hongling, Lai, Jinsheng, Liu, Bingqiang, Wen, Ziyuan, Xiong, Yulong, Li, Honglin, Zhou, Yuhua, Fu, Qiuyun, Yu, Guoyi, Yan, Xiaoxiang, Yang, Xiaoyun, Zhang, Jianmin, Wang, Chao, Zeng, Hesong“…Convolutional neural network (CNN) were designed to generate classifications of the auscultation. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8659por Pérez-García, Fernando, Dorent, Reuben, Rizzi, Michele, Cardinale, Francesco, Frazzini, Valerio, Navarro, Vincent, Essert, Caroline, Ollivier, Irène, Vercauteren, Tom, Sparks, Rachel, Duncan, John S., Ourselin, Sébastien“…We performed self-supervised training of a 3D CNN for RC segmentation using our simulation method. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8660por Wallis, David, Soussan, Michaël, Lacroix, Maxime, Akl, Pia, Duboucher, Clément, Buvat, Irène“…These regions were split into overlapping 3D cubes, which were individually predicted as positive or negative using a 3D CNN. From these predictions, pathological mediastinal nodes could be identified. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto