-
8721“…These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8722por Rahman, Tawsifur, Khandakar, Amith, Qiblawey, Yazan, Tahir, Anas, Kiranyaz, Serkan, Abul Kashem, Saad Bin, Islam, Mohammad Tariqul, Al Maadeed, Somaya, Zughaier, Susu M., Khan, Muhammad Salman, Chowdhury, Muhammad E.H.“…Six different pre-trained Convolutional Neural Networks (CNNs) (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and ChexNet) and a shallow CNN model were investigated on the plain and segmented lung CXR images. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8723por Chereda, Hryhorii, Bleckmann, Annalen, Menck, Kerstin, Perera-Bel, Júlia, Stegmaier, Philip, Auer, Florian, Kramer, Frank, Leha, Andreas, Beißbarth, Tim“…RESULTS: We extended the procedure of LRP to make it available for Graph-CNN and tested its applicability on a large breast cancer dataset. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8724por Afshar, Majid, Sharma, Brihat, Bhalla, Sameer, Thompson, Hale M., Dligach, Dmitriy, Boley, Randy A., Kishen, Ekta, Simmons, Alan, Perticone, Kathryn, Karnik, Niranjan S.“…Manually completed Drug Abuse Screening Test served as the reference standard to validate a convolutional neural network (CNN) classifier with coded word embedding features from the clinical notes of the EHR. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8725por Glangetas, Alban, Hartley, Mary-Anne, Cantais, Aymeric, Courvoisier, Delphine S., Rivollet, David, Shama, Deeksha M., Perez, Alexandre, Spechbach, Hervé, Trombert, Véronique, Bourquin, Stéphane, Jaggi, Martin, Barazzone-Argiroffo, Constance, Gervaix, Alain, Siebert, Johan N.“…A deep learning algorithm (DeepBreath) using a Convolutional Neural Network (CNN) and Support Vector Machine classifier will be trained on these audio recordings to derive an automated prediction of diagnostic (COVID positive vs negative) and risk stratification categories (mild to severe). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8726por Jo, Yong-Yeon, Choi, Young Sang, Park, Hyun Woo, Lee, Jae Hyeok, Jung, Hyojung, Kim, Hyo-Eun, Ko, Kyounglan, Lee, Chan Wha, Cha, Hyo Soung, Hwangbo, Yul“…In addition, base ResNet18 models pre-trained on ImageNet and trained using compressed mammograms did not show performance improvements over our CNN model, with AUROC and AUPRC values ranging from 0.77 to 0.87 and 0.52 to 0.71 respectively when trained and tested on images with maximum CRs of 5 K. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8727“…CONCLUSION: Different from previous studies applied classic CNN models to transfer features from the non-medical dataset, we leverage knowledge from the similar ophthalmic dataset and propose an attention-based deep transfer learning model for the glaucoma diagnosis task. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8728“…These generated images are then fed into a new Convolutional Neural Network (CNN) architecture to diagnose COVID-19. RESULTS: Two different classification scenarios are conducted on a publicly available paper-based ECG image dataset to reveal the diagnostic capability and performance of the proposed approach. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8729por Hermsen, Meyke, Volk, Valery, Bräsen, Jan Hinrich, Geijs, Daan J., Gwinner, Wilfried, Kers, Jesper, Linmans, Jasper, Schaadt, Nadine S., Schmitz, Jessica, Steenbergen, Eric J., Swiderska-Chadaj, Zaneta, Smeets, Bart, Hilbrands, Luuk B., Feuerhake, Friedrich, van der Laak, Jeroen A. W. M.“…The slides were multi spectrally imaged and custom-made python scripts enabled conversion to artificial brightfield whole-slide images (WSI). We used an existing CNN for the detection of lymphocytes with cytoplasmatic staining patterns in immunohistochemistry and developed two new CNNs for the detection of macrophages and nuclear-stained lymphocytes. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8730por Wang, Xiaoxiao, Zou, Chong, Zhang, Yi, Li, Xiuqing, Wang, Chenxi, Ke, Fei, Chen, Jie, Wang, Wei, Wang, Dian, Xu, Xinyu, Xie, Ling, Zhang, Yifen“…METHODS: In this study, we trained a deep convolutional neural network (CNN) of ResNet on whole-slide images (WSIs) to predict the gBRCA mutation in breast cancer. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8731“…The experimental results showed that the bidirectional encoder representation from transformers (BERT) model outperformed the iterated dilated convolutional neural networks-conditional random field (ID-CNN-CRF) and bidirectional long short-term memory networks-conditional random field (Bi-LSTM-CRF) for NER tasks with macro-F1 scores of 80.97% and 90.06% under the exact and inexact matching schemes, respectively. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8732por Ningrum, Dina Nur Anggraini, Kung, Woon-Man, Tzeng, I-Shiang, Yuan, Sheng-Po, Wu, Chieh-Chen, Huang, Chu-Ya, Muhtar, Muhammad Solihuddin, Nguyen, Phung-Anh, Li, Jack Yu-Chuan, Wang, Yao-Chin“…Deep learning methods of convolutional neural network (CNN) and artificial neural network (ANN) were used together to develop a risk prediction model. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8733por Saeed, Ali Q, Sheikh Abdullah, Siti Norul Huda, Che-Hamzah, Jemaima, Abdul Ghani, Ahmad Tarmizi“…METHODS: To organize this review comprehensively, articles and reviews were collected using the following keywords: (“Glaucoma,” “optic disc,” “blood vessels”) and (“receptive field,” “loss function,” “GAN,” “Generative Adversarial Network,” “Deep learning,” “CNN,” “convolutional neural network” OR encoder). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8734por Nowak, Sebastian, Mesropyan, Narine, Faron, Anton, Block, Wolfgang, Reuter, Martin, Attenberger, Ulrike I., Luetkens, Julian A., Sprinkart, Alois M.“…A ResNet50 convolutional neural network (CNN) pre-trained on the ImageNet archive was used for cirrhosis detection with and without upstream liver segmentation. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8735por Liu, Yongkai, Zheng, Haoxin, Liang, Zhengrong, Miao, Qi, Brisbane, Wayne G., Marks, Leonard S., Raman, Steven S., Reiter, Robert E., Yang, Guang, Sung, Kyunghyun“…For a given suspicious prostate lesion, the volumetric patches of T2-Weighted MRI and apparent diffusion coefficient images were cropped and used as the input to Textured-DL, consisting of a 3D gray-level co-occurrence matrix extractor and a CNN. PI-RADS-CLA by an expert reader served as a baseline to compare classification performance with Textured-DL in differentiating csPCa from non-csPCa. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8736por Mamalakis, Michail, Swift, Andrew J., Vorselaars, Bart, Ray, Surajit, Weeks, Simonne, Ding, Weiping, Clayton, Richard H., Mackenzie, Louise S., Banerjee, Abhirup“…Since the DenseNet and ResNet have orthogonal performances in some instances, in the proposed model we have created an extra layer with convolutional neural network (CNN) blocks to join these two models together to establish superior performance as compared to the two individual networks. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8737“…A deep learning network model Mask-R-CNN was constructed to enhance the ability of image reconstruction. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8738“…METHODS: The hybrid model consisted of a U-Net for initial semantic segmentation and a sliding-window (SW) CNN for refinement by correcting the segmentation errors of U-Net. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8739por Abd-Elmoniem, Khaled Z., Yassine, Inas A., Metwalli, Nader S., Hamimi, Ahmed, Ouwerkerk, Ronald, Matta, Jatin R., Wessel, Mia, Solomon, Michael A., Elinoff, Jason M., Ghanem, Ahmed M., Gharib, Ahmed M.“…In this work, we developed an end-to-end deep-learning framework for pixel-to-pixel mapping of the two-dimensional Eulerian principal strains [Formula: see text] and [Formula: see text] directly from 1-1 spatial modulation of magnetization (SPAMM) tMRI at native image resolution using convolutional neural network (CNN). Four different deep learning conditional generative adversarial network (cGAN) approaches were examined. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8740por Zeng, Guodong, Degonda, Celia, Boschung, Adam, Schmaranzer, Florian, Gerber, Nicolas, Siebenrock, Klaus A., Steppacher, Simon D., Tannast, Moritz, Lerch, Till D.“…The location of impingement was not significantly different between manual and automatic segmentation of MRI-based 3D models, and the location of extra-articular hip impingement was not different between CT- and MRI-based 3D models. CONCLUSION: CNN can potentially be used in clinical practice to provide rapid and accurate 3D MRI hip joint models for young patients. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto