-
8741por Vu, Nguyen Thanh, Phuc, Tran Huu, Oanh, Kim Thi Phuong, Sang, Nguyen Van, Trang, Trinh Thi, Nguyen, Nguyen Hong“…Our analyses using machine learning (i.e., ML-KAML) and deep learning (i.e., DL-MLP and DL-CNN) together with the four common methods (PBLUP, GBLUP, ssGBLUP, and BayesR) were conducted for two main disease resistance traits (i.e., survival status coded as 0 and 1 and survival time, i.e., days that the animals were still alive after the challenge test) in a pedigree consisting of 560 individual animals (490 offspring and 70 parents) genotyped for 14,154 single nucleotide polymorphism (SNPs). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8742por Wang, Chaoxin, Caragea, Doina, Kodadinne Narayana, Nisarga, Hein, Nathan T., Bheemanahalli, Raju, Somayanda, Impa M., Jagadish, S. V. Krishna“…Specifically, we train a CNN model to distinguish between chalky and non-chalky grains and subsequently use Grad-CAM to identify the area of a grain that is indicative of the chalky class. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8743por Zhang, Shujun, Lv, Bo, Zheng, Xiangpeng, Li, Ya, Ge, Weiqiang, Zhang, Libo, Mo, Fan, Qiu, Jianjian“…METHOD: A retrospective study of 45 patients who underwent SBRT was involved, and Mask R-CNN based algorithm model helped to predict the internal target volume (ITV) using the CBCT image database. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8744por Washington, Peter, Kalantarian, Haik, Kent, John, Husic, Arman, Kline, Aaron, Leblanc, Emilie, Hou, Cathy, Mutlu, Onur Cezmi, Dunlap, Kaitlyn, Penev, Yordan, Varma, Maya, Stockham, Nate Tyler, Chrisman, Brianna, Paskov, Kelley, Sun, Min Woo, Jung, Jae-Yoon, Voss, Catalin, Haber, Nick, Wall, Dennis Paul“…With this drastically expanded pediatric emotion–centric database (>30 times larger than existing public pediatric emotion data sets), we trained a convolutional neural network (CNN) computer vision classifier of happy, sad, surprised, fearful, angry, disgust, and neutral expressions evoked by children. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8745“…The MA-DenseNet201 classification model outperforms eight state-of-the-art CNN models, in terms of sensitivity and interpretation with lung localization network. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8746“…Initially, it analyzes the CT slices using multilevel discrete wavelet decomposition (DWT) and then uses the heatmaps of the approximation levels to train three ResNet CNN models. These ResNets use the spectral–temporal information of such images to perform classification. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8747por Yang, Meiyi, He, Xiaopeng, Xu, Lifeng, Liu, Minghui, Deng, Jiali, Cheng, Xuan, Wei, Yi, Li, Qian, Wan, Shang, Zhang, Feng, Wu, Lei, Wang, Xiaomin, Song, Bin, Liu, Ming“…RESULTS: The mean accuracy, sensitivity, specificity, and Area Under Curve achieved by CNN were 82.3%, 89.4%, 83.2%, and 85.7%, respectively. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8748por Chen, Ke-Wei, Wang, Yu-Chen, Liu, Meng-Hsuan, Tsai, Being-Yuah, Wu, Mei-Yao, Hsieh, Po-Hsin, Wei, Jung-Ting, Shih, Edward S. C., Shiao, Yi-Tzone, Hwang, Ming-Jing, Wu, Ya-Lun, Hsu, Kai-Cheng, Chang, Kuan-Cheng“…METHODS: The proposed AI model combines a convolutional neural network and long short-term memory (CNN-LSTM) to predict STEMI on prehospital 12-lead ECGs obtained from mini-12-lead ECG devices equipped in ambulance vehicles in Central Taiwan. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8749por Kendrick, Jake, Francis, Roslyn J., Hassan, Ghulam Mubashar, Rowshanfarzad, Pejman, Ong, Jeremy S. L., Ebert, Martin A.“…A fully 3D convolutional neural network (CNN) is proposed which is based on the self-configuring nnU-Net framework, and was trained on a subset of these scans, with an independent test set reserved for model evaluation. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8750por Hsu, Shih-Tien, Su, Yu-Jie, Hung, Chian-Huei, Chen, Ming-Jer, Lu, Chien-Hsing, Kuo, Chih-En“…RESULTS: The highest mean accuracy, mean sensitivity, and mean specificity of ten single CNN models were 90.51 ± 4.36%, 89.77 ± 4.16%, and 92.00 ± 5.95%, respectively. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8751por Bui, Vy, Hsu, Li-Yueh, Chang, Lin-Ching, Sun, An-Yu, Tran, Loc, Shanbhag, Sujata M., Zhou, Wunan, Mehta, Nehal N., Chen, Marcus Y.“…This strategy allowed the new framework to assemble optimal computer-generated labels from a large dataset for effective training of a deep convolutional neural network (CNN). A large clinical cardiac CTA studies (n = 1,064) were used to train and validate our framework. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8752por Zhuang, Mingrui, Chen, Zhonghua, Wang, Hongkai, Tang, Hong, He, Jiang, Qin, Bobo, Yang, Yuxin, Jin, Xiaoxian, Yu, Mengzhu, Jin, Baitao, Li, Taijing, Kettunen, Lauri“…RESULTS: For validation, two human operators independently annotated four abdominal organs in computed tomography (CT) images using our method and two compared methods, i.e. a traditional contour-interpolation method and a state-of-the-art (SOTA) convolutional network (CNN) method based on voxel label representation. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8753“…The MDLCN model enhances prediction accuracy of cell-type-specific FGNs compared to single modality convolutional neural network (CNN) and boosting tree models, as shown by higher areas under both receiver operating characteristic (ROC) and precision-recall curves for different levels of independent test datasets. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8754“…METHODS: The bilateral femurs and tibias were segmented by a cascaded convolutional neural network (CNN), referred to as LLDNet. Each LLDNet was conducted through use of residual blocks to learn more abundant features, a residual convolutional block attention module (Res-CBAM) to integrate both spatial and channel attention mechanisms, and an attention gate structure to alleviate the semantic gap. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8755“…Subsequently, we converted Chinese characters into square images to obtain Chinese character image features from another modality by using a 2-dimensional CNN. Finally, we input multisemantic features into Bidirectional Long Short-Term Memory with Conditional Random Fields to achieve Chinese CNER. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8756“…Then, the registered single-source (TIR, NIR, depth), dual-source (TIR-NIR, TIR-depth, NIR-depth), and multi-source (TIR-NIR-depth) images were separately used to train dead chicken detecting models with object detection networks, including YOLOv8n, Deformable DETR, Cascade R-CNN, and TOOD. The results showed that, at an IoU (Intersection over Union) threshold of 0.5, the performance of these models was not entirely the same. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8757por Maracani, Andrea, Pastore, Vito Paolo, Natale, Lorenzo, Rosasco, Lorenzo, Odone, Francesca“…In the next part of this work, we adopt three ImageNet22k pre-trained Vision Transformers and one ConvNeXt, obtaining results on par (or slightly superior) with the state-of-the-art, corresponding to the usage of CNN models ensembles, with a single model. Finally, we design and test an ensemble of our Vision Transformers and the ConvNeXt, outperforming the state-of-the-art existing works on plankton image classification on the three target datasets. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8758“…The AmmH approach involves the construction of a hybrid single-modal encoder module for each modal data, which facilitates the extraction of both local and global features by integrating a CNN module and a Transformer module. The extracted features from the two modalities are then weighted adaptively using an adaptive modality-weight generation network and fused using an adaptive cross-modal encoder module. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8759“…All the five ML algorithms performed well in terms of discriminating between gram-positive and gram-negative bacteremia, but the performance of convolutional neural network (CNN) and random forest (RF) were better than other three algorithms. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8760por Wu, Ruizhen, Liu, Huaqing, Li, Hao, Chen, Lifen, Wei, Lei, Huang, Xuehong, Liu, Xu, Men, Xuejiao, Li, Xidan, Han, Lanqing, Lu, Zhengqi, Qin, Bing“…The DL model contains a Mask R-CNN for detecting CMBs and a multi-instance learning (MIL) network for classifying CSVD. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto