Mostrando 8,741 - 8,760 Resultados de 8,800 Para Buscar '"CNN"', tiempo de consulta: 0.29s Limitar resultados
  1. 8741
    “…Our analyses using machine learning (i.e., ML-KAML) and deep learning (i.e., DL-MLP and DL-CNN) together with the four common methods (PBLUP, GBLUP, ssGBLUP, and BayesR) were conducted for two main disease resistance traits (i.e., survival status coded as 0 and 1 and survival time, i.e., days that the animals were still alive after the challenge test) in a pedigree consisting of 560 individual animals (490 offspring and 70 parents) genotyped for 14,154 single nucleotide polymorphism (SNPs). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 8742
    “…Specifically, we train a CNN model to distinguish between chalky and non-chalky grains and subsequently use Grad-CAM to identify the area of a grain that is indicative of the chalky class. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 8743
    “…METHOD: A retrospective study of 45 patients who underwent SBRT was involved, and Mask R-CNN based algorithm model helped to predict the internal target volume (ITV) using the CBCT image database. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 8744
    “…With this drastically expanded pediatric emotion–centric database (>30 times larger than existing public pediatric emotion data sets), we trained a convolutional neural network (CNN) computer vision classifier of happy, sad, surprised, fearful, angry, disgust, and neutral expressions evoked by children. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 8745
    por Sharma, Ajay, Mishra, Pramod Kumar
    Publicado 2022
    “…The MA-DenseNet201 classification model outperforms eight state-of-the-art CNN models, in terms of sensitivity and interpretation with lung localization network. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 8746
    por Attallah, Omneya, Samir, Ahmed
    Publicado 2022
    “…Initially, it analyzes the CT slices using multilevel discrete wavelet decomposition (DWT) and then uses the heatmaps of the approximation levels to train three ResNet CNN models. These ResNets use the spectral–temporal information of such images to perform classification. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 8747
  8. 8748
    “…METHODS: The proposed AI model combines a convolutional neural network and long short-term memory (CNN-LSTM) to predict STEMI on prehospital 12-lead ECGs obtained from mini-12-lead ECG devices equipped in ambulance vehicles in Central Taiwan. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 8749
    “…A fully 3D convolutional neural network (CNN) is proposed which is based on the self-configuring nnU-Net framework, and was trained on a subset of these scans, with an independent test set reserved for model evaluation. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 8750
    “…RESULTS: The highest mean accuracy, mean sensitivity, and mean specificity of ten single CNN models were 90.51 ± 4.36%, 89.77 ± 4.16%, and 92.00 ± 5.95%, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 8751
    “…This strategy allowed the new framework to assemble optimal computer-generated labels from a large dataset for effective training of a deep convolutional neural network (CNN). A large clinical cardiac CTA studies (n = 1,064) were used to train and validate our framework. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 8752
    “…RESULTS: For validation, two human operators independently annotated four abdominal organs in computed tomography (CT) images using our method and two compared methods, i.e. a traditional contour-interpolation method and a state-of-the-art (SOTA) convolutional network (CNN) method based on voxel label representation. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 8753
    “…The MDLCN model enhances prediction accuracy of cell-type-specific FGNs compared to single modality convolutional neural network (CNN) and boosting tree models, as shown by higher areas under both receiver operating characteristic (ROC) and precision-recall curves for different levels of independent test datasets. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 8754
    “…METHODS: The bilateral femurs and tibias were segmented by a cascaded convolutional neural network (CNN), referred to as LLDNet. Each LLDNet was conducted through use of residual blocks to learn more abundant features, a residual convolutional block attention module (Res-CBAM) to integrate both spatial and channel attention mechanisms, and an attention gate structure to alleviate the semantic gap. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 8755
    “…Subsequently, we converted Chinese characters into square images to obtain Chinese character image features from another modality by using a 2-dimensional CNN. Finally, we input multisemantic features into Bidirectional Long Short-Term Memory with Conditional Random Fields to achieve Chinese CNER. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 8756
    “…Then, the registered single-source (TIR, NIR, depth), dual-source (TIR-NIR, TIR-depth, NIR-depth), and multi-source (TIR-NIR-depth) images were separately used to train dead chicken detecting models with object detection networks, including YOLOv8n, Deformable DETR, Cascade R-CNN, and TOOD. The results showed that, at an IoU (Intersection over Union) threshold of 0.5, the performance of these models was not entirely the same. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 8757
    “…In the next part of this work, we adopt three ImageNet22k pre-trained Vision Transformers and one ConvNeXt, obtaining results on par (or slightly superior) with the state-of-the-art, corresponding to the usage of CNN models ensembles, with a single model. Finally, we design and test an ensemble of our Vision Transformers and the ConvNeXt, outperforming the state-of-the-art existing works on plankton image classification on the three target datasets. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 8758
    “…The AmmH approach involves the construction of a hybrid single-modal encoder module for each modal data, which facilitates the extraction of both local and global features by integrating a CNN module and a Transformer module. The extracted features from the two modalities are then weighted adaptively using an adaptive modality-weight generation network and fused using an adaptive cross-modal encoder module. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 8759
    “…All the five ML algorithms performed well in terms of discriminating between gram-positive and gram-negative bacteremia, but the performance of convolutional neural network (CNN) and random forest (RF) were better than other three algorithms. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 8760
Herramientas de búsqueda: RSS