-
1“…In this study, we propose a convolutional neural network (CNN)-based tool, the pcPromoter-CNN, for application in the prediction of promotors and their classification into subclasses σ70, σ54, σ38, σ32, σ28 and σ24. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
2por Xu, Xiangyang, Zhao, Mian, Shi, Peixin, Ren, Ruiqi, He, Xuhui, Wei, Xiaojun, Yang, Hao“…In this paper, deep learning is investigated to intelligently detect road cracks, and Faster R-CNN and Mask R-CNN are compared and analyzed. The results show that the joint training strategy is very effective, and we are able to ensure that both Faster R-CNN and Mask R-CNN complete the crack detection task when trained with only 130+ images and can outperform YOLOv3. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
3
-
4
-
5por Meesters, Ybe, Starreveld, Danielle, Verwijk, Esmée, Spaans, Harm-Pieter, Gordijn, Marijke C. M.“…Information is provided about the Chronotherapy Network Netherlands (CNN).…”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
6“…In this study, the results are compared using VGG-16 for faster R-CNN model and ResNet-50 and ResNet-101 backbones for mask R-CNN. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
7“…RESULTS: In this paper, we propose a novel convolutional neural network algorithm using a Siamese network architecture called CNN-Siam. CNN-Siam uses a convolutional neural network (CNN) as a backbone network in the form of a twin network architecture to learn the feature representation of drug pairs from multimodal data of drugs (including chemical substructures, targets and enzymes). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8por Conduit, Paul T., Feng, Zhe, Richens, Jennifer H., Baumbach, Janina, Wainman, Alan, Bakshi, Suruchi D., Dobbelaere, Jeroen, Johnson, Steven, Lea, Susan M., Raff, Jordan W.“…The phosphorylation promotes the assembly of a Cnn scaffold around the centrioles that is in constant flux, with Cnn molecules recruited continuously around the centrioles as the scaffold spreads slowly outward. …”
Publicado 2014
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
9“…The proposed approach benefits from a designed convolutional neural network (CNN) model as a feature extractor. Thanks to arithmetic optimization algorithm (AOA), a feature selection process was also applied to the features obtained from CNN. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
10“…This paper proposes a spread spectrum signal detection method based on convolutional neural network (CNN). Through experimental analysis, the detection performance of the CNN model proposed in this paper on DSSS signals in various situations has been compared and analyzed with traditional autocorrelation detection methods for different signal-to-noise ratios. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
11por Yao, Guoliang, Mao, Xiaobo, Li, Nan, Xu, Huaxing, Xu, Xiangyang, Jiao, Yi, Ni, Jinhong“…Secondly, an integrated convolutional neural network (CNN) and gated recurrent unit (GRU) classifier is proposed. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
12“…In the end, we show that the Siamese CNN can work with one image per class, and a 100% average classification accuracy is achieved with 50 images per class, where the CNN achieves only average classification accuracy of 43% for the same dataset.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
13“…Under the encoder-decoder structure, the encoder promotes the interaction between the low-level features extracted from the target and search branch by the CNN to obtain global attention information, while the decoder replaces cross-correlation to send global attention information into the head module. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
14“…Therefore, we propose a method, where we extract the volumetric information of the hologram by mapping it to a volume—using a standard wavefield propagation algorithm—and then feed it to a 3D-CNN-based architecture. We apply this method to a challenging real-life classification problem and compare its performance with an equivalent 2D-CNN counterpart. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
15por Mohammed Alsumaidaee, Yaseen Ahmed, Yaw, Chong Tak, Koh, Siaw Paw, Tiong, Sieh Kiong, Chen, Chai Phing, Yusaf, Talal, Abdalla, Ahmed N, Ali, Kharudin, Raj, Avinash Ashwin“…This paper systematically analyzes three deep learning techniques, namely 1D-CNN, LSTM, and 1D-CNN-LSTM hybrid models, to identify the most effective model for detecting corona faults. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
16“…In this paper, we present an approach for detecting attacks on IoT networks using a combination of two convolutional neural networks (CNN-CNN). The first CNN model is leveraged to select the significant features that contribute to IoT attack detection from the raw data on network traffic. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
17“…To solve this problem, this paper proposed a two-stage detection method based on the dynamic region-based convolutional neural network (Dynamic R-CNN). We divide lung cancer into squamous cell carcinoma, adenocarcinoma, and small cell carcinoma. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
18por Zhang, Ruicong, Zhuo, Li, Chen, Meijuan, Yin, Hongxia, Li, Xiaoguang, Wang, Zhenchang“…In this paper, according to the specific characteristics and segmentation requirements of the vestibule, a vestibule segmentation network with a hybrid deep feature fusion of 2D CNN and 3D CNN is proposed. First, a 2D CNN is designed to extract the intraslice features through multiple deep feature fusion strategies, including a convolutional feature fusion strategy for different receptive fields, a feature channel fusion strategy based on channel attention mechanism, and an encoder-decoder feature fusion strategy. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
19por Al-Zoghby, Aya M., Al-Awadly, Esraa Mohamed K., Moawad, Ahmad, Yehia, Noura, Ebada, Ahmed Ismail“…The proposed DCTN model depends on dual convolutional neural networks with VGG-16 architecture concatenated with custom CNN (convolutional neural networks) architecture. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
20“…The most frequent and widely utilized machine learning model for image recognition is probably task CNN. Similarly, in our study, we categorize brain MRI scanning images using CNN and data augmentation and image processing techniques. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto