Mostrando 1,141 - 1,160 Resultados de 1,370 Para Buscar '"Compact Muon Solenoid"', tiempo de consulta: 0.17s Limitar resultados
  1. 1141
  2. 1142
  3. 1143
  4. 1144
    por Bainbridge, R J
    Publicado 2004
    “…The Compact Muon Solenoid (CMS) experiment is one of four large high energy physics experiments presently being constructed for operation at the Large Hadron Collider (LHC) facility at CERN, Geneva. …”
    Enlace del recurso
  5. 1145
  6. 1146
    “…For the 2016 physics data runs, the L1 trigger system of the compact muon solenoid (CMS) experiment underwent a major upgrade to cope with the increasing instantaneous luminosity of the CERN LHC whilst maintaining a high event selection efficiency for the CMS physics program. …”
    Enlace del recurso
    Enlace del recurso
  7. 1147
    por Vai, Ilaria
    Publicado 2018
    “…This PhD work is involved in the framework of the upgrade of the muon system of the Compact Muon Solenoid (CMS) experiment. The CMS muon system during the first period of operation (Run 1) of the Large Hadron Collider (LHC)was instrumented with three different kinds of gaseous detectors: Drift Tubes(DT) in the barrel, Cathode Strip Chambers (CSC) in the endcaps and Resistive Plate Chambers (RPC) as complementary technology in both regions. …”
    Enlace del recurso
  8. 1148
    por Gilbert, Andrew James
    Publicado 2018
    “…The Compact Muon Solenoid (CMS) is a general-purpose particle detector at the CERN Large Hadron Collider. …”
    Enlace del recurso
  9. 1149
  10. 1150
    por Abbas, M., Abbrescia, M., Abdalla, H., Abdelalim, A., AbuZeid, S., Agapitos, A., Ahmad, A., Ahmed, A., Ahmed, W., Aimè, C., Aruta, C., Asghar, I., Aspell, P., Avila, C., Babbar, J., Ban, Y., Band, R., Bansal, S., Benussi, L., Bhatnagar, V., Bianco, M., Bianco, S., Black, K., Borgonovi, L., Bouhali, O., Braghieri, A., Braibant, S., Butalla, S., Calzaferri, S., Caponero, M., Carlson, J., Cassese, F., Cavallo, N., Chauhan, S.S., Colafranceschi, S., Colaleo, A., Garcia, A. Conde, Dalchenko, M., De Iorio, A., De Lentdecker, G., Olio, D. Dell, De Robertis, G., Dharmaratna, W., Dildick, S., Dorney, B., Erbacher, R., Fabozzi, F., Fallavollita, F., Ferraro, A., Fiorina, D., Fontanesi, E., Franco, M., Galloni, C., Giacomelli, P., Gigli, S., Gilmore, J., Gola, M., Gruchala, M., Gutierrez, A., Hadjiiska, R., Hakkarainen, T., Hauser, J., Hoepfner, K., Hohlmann, M., Hoorani, H., Huang, T., Iaydjiev, P., Irshad, A., Iorio, A., Ivone, F., Jang, W., Jaramillo, J., Juodagalvis, A., Juska, E., Kailasapathy, B., Kamon, T., Kang, Y., Karchin, P., Kaur, A., Kaur, H., Keller, H., Kim, H., Kim, J., Kim, S., Ko, B., Kumar, A., Kumar, S., Lacalamita, N., Lee, J.S.H., Levin, A., Li, Q., Licciulli, F., Lista, L., Liyanage, K., Loddo, F., Luhach, M., Maggi, M., Maghrbi, Y., Majumdar, N., Malagalage, K., Malhotra, S., Martiradonna, S., McLean, C., Merlin, J., Misheva, M., Mocellin, G., Moureaux, L., Muhammad, A., Muhammad, S., Mukhopadhyay, S., Naimuddin, M., Nuzzo, S., Oliveira, R., Paolucci, P., Park, I.C., Passamonti, L., Passeggio, G., Peck, A., Pellecchia, A., Perera, N., Petre, L., Petrow, H., Piccolo, D., Pierluigi, D., Raffone, G., Rahmani, M., Ramirez, F., Ranieri, A., Rashevski, G., Regnery, B., Ressegotti, M., Riccardi, C., Rodozov, M., Romano, E., Roskas, C., Rossi, B., Rout, P., Ruiz, J.D., Russo, A., Safonov, A., Sahota, A.K., Saltzberg, D., Saviano, G., Shah, A., Sharma, A., Sharma, R., Sheokand, T., Shopova, M., Simone, F.M., Singh, J., Sonnadara, U., Starling, E., Stone, B., Sturdy, J., Sultanov, G., Szillasi, Z., Teague, D., Teyssier, D., Tuuva, T., Tytgat, M., Vai, I., Vanegas, N., Venditti, R., Verwilligen, P., Vetens, W., Virdi, A.K., Vitulo, P., Wajid, A., Wang, D., Wang, K., Watson, I.J., Wickramage, N., Wickramarathna, D.D.C., Yang, S., Yang, U., Yang, Y., Yongho, J., Yoon, I., You, Z., Yu, I., Zaleski, S.
    Publicado 2021
    “…To improve both the tracking and triggering of muons, the Compact Muon Solenoid (CMS) Collaboration plans to install triple-layer Gas Electron Multiplier (GEM) detectors in the CMS muon endcaps. …”
    Enlace del recurso
    Enlace del recurso
  11. 1151
    “…This review article describes the performance of the magnetic field measuring and monitoring systems for the Compact Muon Solenoid (CMS) detector. To cross-check the magnetic flux distribution obtained with the CMS magnet model, four systems for measuring the magnetic flux density in the detector volume were used. …”
    Enlace del recurso
    Enlace del recurso
  12. 1152
    por CMS Collaboration
    Publicado 2010
    “…We present the first measurements of inclusive W and Z production cross sections in muon and electron decay channels at $\sqrt{s} = 7~\text{Te\hspace{-.08em}V}$, obtained using $198~\text{nb}^{-1}$ of pp collisions in the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). …”
    Enlace del recurso
  13. 1153
    por Silva, Pedro
    Publicado 2009
    “…The LHC is expected to clarify open issues in the current understanding of the fundamental interactions, namely the mechanism that breaks the Electroweak symmetry. The Compact Muon Solenoid experiment ( CMS ) is one of the general purpose experiments installed at the LHC . …”
    Enlace del recurso
  14. 1154
    por Cepeda, Maria
    Publicado 2010
    “…We present the first measurements of inclusive W and Z production cross sections in muon and electron decay channels at $\sqrt s = 7~\textrm{TeV}$, obtained using an integrated luminosity of $198~\textrm{nb}^{-1}$ of proton proton collisions recorded by the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). …”
    Enlace del recurso
  15. 1155
    por Corrin, E P
    Publicado 2002
    “…The Compact Muon Solenoid (CMS) is a general-purpose detector, based at CERN in Switzerland, designed to look for new physics in high-energy protonproton collisions provided by the Large Hadron Collider. …”
    Enlace del recurso
  16. 1156
  17. 1157
  18. 1158
    por Franklin, Allan
    Publicado 2013
    “…From these papers, he distills the dramatic changes to particle physics experimentation from 1894 through 2009.Franklin develops a framework for his analysis, viewing each example according to exclusion and selection of data; possible experimenter bias; details of the experimental apparatus; size of the data set, apparatus, and number of authors; rates of data taking along with analysis and reduction; distinction between ideal and actual experiments; historical accounts of previous experiments; and personal comments and style.From Millikan’s tabletop oil-drop experiment to the Compact Muon Solenoid apparatus measuring approximately 4,000 cubic meters (not including accelerators) and employing over 2,000 authors, Franklin’s study follows the decade-by-decade evolution of scale and standards in particle physics experimentation. …”
    Enlace del recurso
  19. 1159
    por Bell, Alan James
    Publicado 2015
    “…The Compact Muon Solenoid (CMS) detector, situated on the Large Hadron Collider (LHC) ring is a multi-purpose detector designed to search for new physics phenomena, make precise measurements of known processes at previously untapped energies and look for hints of physics beyond the Standard Model. …”
    Enlace del recurso
  20. 1160
    por Low, Jia Fu
    Publicado 2016
    “…A data sample, recorded by the Compact Muon Solenoid (CMS) experiment at the LHC, that corresponds to 18.9 fb$^{-1}$ integrated luminosity at the center-of-mass energy $\sqrt{s} = 8$ TeV is analyzed. …”
    Enlace del recurso
Herramientas de búsqueda: RSS