-
1“…The Dow Jones Industrial Average (DJIA) index is selected as a test-bed. The DJIA time-series is normalized and segmented into several time window vectors. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
2“…We derive a measure of entropy using the correlation matrix of the stock market components of the DOW Jones Industrial Average (DJIA) index. Using VAR models in different specifications, we show that shocks in production or the DJIA index lead to an increase in the entropy of the financial markets.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
3
-
4
-
5por Machado, José A. Tenreiro“…The Dow Jones Industrial Average (DJIA) is one of the most influential financial indices, and due to its importance, it is adopted as a test bed for this study. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
6por Preis, Tobias, Kenett, Dror Y., Stanley, H. Eugene, Helbing, Dirk, Ben-Jacob, Eshel“…We analyze 72 years of daily closing prices of the 30 stocks forming the Dow Jones Industrial Average (DJIA). We find the striking result that the average correlation among these stocks scales linearly with market stress reflected by normalized DJIA index returns on various time scales. …”
Publicado 2012
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
7“…We compared the results with the other three models, including the LSTM model, the LSTM model with wavelet denoising and the gated recurrent unit(GRU) neural network model on S&P 500, DJIA, HSI datasets. Results from experiments on the S&P 500 and DJIA datasets show that the coefficient of determination of the attention-based LSTM model is both higher than 0.94, and the mean square error of our model is both lower than 0.05.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8“…The results show that the proposed model is able to generate higher mean return than the benchmark DJIA index at minimum risk. However, short sale is not allowed for the applicability of the proposed model in portfolio investment.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
9“…TECP had the greatest correlation with DJIA (r = 0.952, P < 0.001). In the multiple regression analysis, the increase in TECP led to the rise of the NASDAQ 100 index (adjusted R(2) was 0.790, P < 0.001). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
10“…We use copula-GARCH models to test the time-varying dependence of CATs, in a portfolio composed of six stock markets (CAC 40, DJIA, EUROSTOXX 50, FTSE 100, HANGSENG, and NIKKEI 225). …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
11“…More precisely, we use the [Image: see text] stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Texto -
12por Chen, H, Sun, Z, Zhang, J, Aguilar-benitez, M, Ting, S, Rozhkov, A, Pashnin, A, Bertucci, B, Strigari, L, Zhang, Z, Graziani, M, Formato, V, Bindi, V, Menchaca-rocha, A A, Wei, J, Vecchi, M, De carvalho barao, F J, Lourenco antunes, J C, Verguilov, V Z, Oliva, A, Capell, M H, Choutko, V, Ting, S, Krasnopevtsev, D, Galdames perez, A, Yu, Y, Wallmann, C, Cui, Z, Bordalo, P, Wu, Z, Berdugo perez, J F, Velasco frutos, M A, Yan, Q, Belyaev, N, Qu, Z, Chouridou, S, Battiston, R, Ferreira da gama velho arruda, M L, Wang, Y, Diaz ginzo, C, Plyaskin, V, Hsieh, T, Ambrosi, G, Di felice, V, Xiao, X, Chang, Y, Xu, W, Bartoloni, A, Burger, J, Wang, X, Nikonov, N, Bayyari, A, Basegmez du pree, S, Borchiellini, M, Casaus, J A, Cai, X, Eline, A, Kounine, O, Kulemzin, A, Medvedeva, T, Weng, Z, Behlmann, M D, Jia, Y, Molero gonzalez, M, Chen, Y, Chou, H, Koutsenko, V, Dadzie, K E, Vazquez acosta, M LEnlace del recurso
Publicado 2002
-
13“…We employ daily returns of Bitcoin, Gold, DJIA, CAC40, NSE50, S&P 500, NASDAQ, and EUROSTOXX from 05–01–2015 to 31–12–2020. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
14“…We extend the literature on stock market forecasting by applying a hybrid model that combines wavelet transform (WT), long short-term memory (LSTM), and an adaptive genetic algorithm (AGA) based on individual ranking to predict stock indices for the Dow Jones Industrial Average (DJIA) index of the New York Stock Exchange, Standard & Poor’s 500 (S&P 500) index, Nikkei 225 index of Tokyo, Hang Seng Index of Hong Kong market, CSI300 index of Chinese mainland stock market, and NIFTY50 index of India. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
15“…The validity of the proposed model is assessed through an extensive empirical testing on the EURO STOXX 50, the DAX, the CAC 40 and the DJIA, for a 5-year period. The results are considered as highly satisfactory, since the optimal ESG portfolios produced by the model provide consistently higher risk-adjusted returns, in comparison to their respective market benchmarks.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
16por Ranco, Gabriele, Aleksovski, Darko, Caldarelli, Guido, Grčar, Miha, Mozetič, Igor“…In particular, we consider, in a period of 15 months, the Twitter volume and sentiment about the 30 stock companies that form the Dow Jones Industrial Average (DJIA) index. We find a relatively low Pearson correlation and Granger causality between the corresponding time series over the entire time period. …”
Publicado 2015
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
17“…The main empirical findings are the following: (i) all the country specific pairs of SSR with stock markets have significant multifractal characteristics (ii) the pairs of NZ-SSR/NZX50, US-SSR/DJIA, and CN-SSR/S&P TSX have the highest multifractal patterns while EU-SSR/Euro-area Index has the lowest multifractal patterns (iii) Australian and New Zealand stock markets exhibit anti-persistent cross-correlation with SSR while the remainder have persistent cross-correlation in their multifractality. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
18“…Specifically, long range positively correlated ARFIMA processes with differencing parameter [Formula: see text] , [Formula: see text] and [Formula: see text] are consistent with moving average cluster entropy results obtained in time series of DJIA, S&P500 and NASDAQ. The findings clearly point to a variability of price returns, consistently with a price dynamics involving multiple temporal scales and, thus, short- and long-run volatility components. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
19“…We perform a comparative analysis between the time series obtained from the CSIE and the historical volatility as provided by the estimators: close-to-close, Parkinson, Garman–Klass, Rogers–Satchell, Yang–Zhang, and intrinsic entropy (IE), defined and computed from historical OHLC daily prices of the Standard & Poor’s 500 index (S&P500), Dow Jones Industrial Average (DJIA), and the NASDAQ Composite index, respectively, for various time intervals. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
20por Curto, José Dias“…In this paper, we provide evidence in favor of a “quietness” in the stock markets, interrupted by COVID-19, by analyzing dispersion, skewness and kurtosis characteristics of the empirical distribution of nine returns series that include individual FATANG stocks (FAANG: Facebook, Amazon, Apple, Netflix and Google; plus Tesla) and US indices (S&P 500, DJIA and NASDAQ). In comparison with the years before, the daily average return after COVID-19 was 6.48, 2.58 and 2.34 times higher for Tesla, Apple and NASDAQ, respectively. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto