Mostrando 1,521 - 1,540 Resultados de 4,167 Para Buscar '"Dropout"', tiempo de consulta: 0.15s Limitar resultados
  1. 1521
    “…While the impact of a delay in access to reproductive care is unknown, previous studies are reassuring that a delay in the timespan of months may not affect clinical outcomes. However, dropout from care during this pandemic remains a serious concern. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 1522
    “…Based on traditional deep convolutional neural network (DCNN) model, we proposed three improvements: (i) We introduced stochastic pooling to replace average pooling and max pooling; (ii) We combined conv layer with batch normalization layer and obtained the conv block (CB); (iii) We combined dropout layer with fully connected layer and obtained the fully connected block (FCB). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 1523
    “…The RNN uses long short-term memory layers (LSTM), dropout regularization, activation functions, mean square error (MSE), and the Adam optimizer to simulate the predictions. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 1524
    “…Although GBS mitigates many of the problems of fragment length analysis, issues with allelic dropout and null alleles often remain due to mismatches in primer binding sites and unnecessarily long PCR products. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 1525
    “…Finally, we show that enAsCas12a delivers similar performance to Cas9 in genome-wide dropout screens but at greatly reduced library size, which will facilitate screens in challenging models.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 1526
    por Deek, Rebecca A., Li, Hongzhe
    Publicado 2021
    “…The data from typical microbiome studies are high dimensional count data with excessive zeros due to both absence of species (structural zeros) and low sequencing depth or dropout. Although methods have been developed for identifying the microbial communities based on mixture models of counts, these methods do not account for excessive zeros observed in the data and do not differentiate structural from sampling zeros. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 1527
    “…This work investigated the effects of many parameters on AlzNet, such as the number of layers, number of filters, and dropout rate. The results were interesting after using many performance metrics for evaluating the proposed AlzNet.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 1528
    “…The effect of possible non-ignorable dropout was tested. Then, doubly robust estimation and sensitivity analyses for unobserved confounding were performed to evaluate the possible causal interpretation of the associations found. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 1529
    “…Subsequently, SPMs were created using Monte Carlo dropout (MCD). The method was boosted by placing a Gaussian distribution (GD) over the model's parameters during sampling (MCD + GD). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 1530
    “…When confronted by the high dimensionality and pervasive dropout events of scRNA-Seq data, purely unsupervised clustering methods may not produce biologically interpretable clusters, which complicates cell type assignment. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 1531
    “…Although there are many effective methods on dropout imputation, cell clustering, and lineage reconstruction based on single cell RNA sequencing (RNA-seq) data, there is no systemic pipeline on how to compare two single cell clusters at the molecular level. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 1532
  13. 1533
    por Yuwen, Lu, Chen, Shuyu, Yuan, Xiaohan
    Publicado 2021
    “…Instead of using predefined hyperparameters, we devise a gradient increasing and decreasing technique that changes the parameters training batch size and input dropout simultaneously by a user-defined step size. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 1534
    “…In addition, social defeat may lead to crime through social problems such as unemployment, school dropout, a broken family structure, or psychotic symptoms. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 1535
    “…Feasibility outcomes included: recruitment and dropout rates, number of training sessions undertaken, and tolerability for dose and training mode. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 1536
  17. 1537
    “…It adopts the basic architecture of a U-shaped convolutional network (U-Net), analyses the actual application scenarios of semantic segmentation of breast ultrasound images, and adds dropout layers to the U-Net architecture to reduce the redundancy in texture details and prevent overfitting. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 1538
    “…This contributes to the assessment of university guidance and tutoring as a strategy for the integral development of the student- personally, academically and professionally- and as a possible protective factor against academic dropout.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 1539
    por Yang, Xue, Lyu, Yin, Sun, Yang, Zhang, Chen
    Publicado 2021
    “…Then, the exponential linear element (ELU) activation function, batch normalization (BN) and Dropout technology are used to improve and optimize the model to mitigate the gradient disappearance, prevent over-fitting, accelerate convergence and enhance the model generalization ability. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 1540
    “…The VGG16 architecture was modified by a global average pooling layer, dense layers, a batch normalization layer, and a dropout layer. Distinguishing the intricate visual features of the diverse chickpea varieties and recognizing them according to these features was conceivable by the obtained model. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS