Mostrando 1,741 - 1,760 Resultados de 3,563 Para Buscar '"Fermión"', tiempo de consulta: 0.24s Limitar resultados
  1. 1741
    por Richardson, R C, Osheroff, D D
    Publicado 1997
    “…Examples include high temperature superconductivity, heavy Fermion superconductivity and the interiors of neutron stars. …”
    Enlace del recurso
  2. 1742
    por Lee, D M
    Publicado 1997
    “…Examples include high temperature superconductivity, heavy Fermion superconductivity and the interiors of neutron stars. …”
    Enlace del recurso
  3. 1743
    “…Some of the excited states known in $^{99}Zr$ have been reasonably described with interacting boson-fermion model (IBFM) calculations. Type-II shell evolution is proposed to play a major role in modifying single-particle energies in $^{99}Zr$.…”
    Enlace del recurso
    Enlace del recurso
  4. 1744
    por Lima, Leonardo S.
    Publicado 2023
    “…For all models analyzed: Ising model as well as noninteracting fermion models, we obtain a little influence of the non-Hermitian parameters on conductivity and thus, a small effect over transport coefficients. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 1745
    por Siu, Z. B., Jalil, M. B. A., Tan, S. G.
    Publicado 2014
    “…Differing from the Dirac fermion Hamiltonian, the hexagonal warping term leads to the opening up of a band gap by an in-plane magnetization. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 1746
    por Yang, Ming, Liu, Wu-Ming
    Publicado 2014
    “…Skutterudites, a class of materials with cage-like crystal structure which have received considerable research interest in recent years, are the breeding ground of several unusual phenomena such as heavy fermion superconductivity, exciton-mediated superconducting state and Weyl fermions. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 1747
    “…The application of the generalised NWA is demonstrated both at tree level and at one-loop order for an example process where the neutral Higgs bosons h and H of the MSSM are produced in the decay of a heavy neutralino and subsequently decay into a fermion pair. The generalised NWA, based on on-shell matrix elements or their approximations leading to simple weight factors, is shown to produce UV- and IR-finite results which are numerically close to the result of the full process at tree level and at one-loop order, where an agreement of better than [Formula: see text] is found for the considered process. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 1748
    “…Dirac semimetals host three-dimensional (3D) Dirac fermion states in the bulk of crystalline solids, which can be viewed as 3D analogs of graphene. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 1749
    por Dávila, María Eugenia, Le Lay, Guy
    Publicado 2016
    “…Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 1750
    “…At the conceptual pivot point is the particular two-dimensional massless Dirac fermion character of graphene charge carriers and its volitional modification by intrinsic or extrinsic means. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 1751
    “…Silicene is a monolayer allotrope of silicon atoms arranged in a honeycomb structure with massless Dirac fermion characteristics similar to graphene. It merits development of silicon-based multifunctional nanoelectronic and spintronic devices operated at room temperature because of strong spin-orbit coupling. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 1752
    “…The compound crystallizes in an antiperovskite tetragonal structure similar to that in the canonical family of platinum-based superconductors APt(3)P (A = Sr, Ca, La) and closely related to the noncentrosymmetric heavy fermion superconductor CePt(3)Si. In contrast to all the superconducting counterparts, however, no superconductivity is observed in CePt(3)P down to 0.5 K. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 1753
    “…Moreover, we include a dark matter candidate in the form of a Majorana fermion which interacts through the 750 GeV portal. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 1754
    por Pradhan, Kalpataru, Das, Subrat K.
    Publicado 2017
    “…We investigate the magnetic and the transport properties of diluted magnetic semiconductors using a spin-fermion Monte-Carlo method on a simple cubic lattice in the intermediate coupling regime. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 1755
  16. 1756
    “…We apply this tool to a paradigmatic class of lattice fermion systems with local reservoirs, characterised by Gaussian non-equilibrium steady states. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 1757
    “…Our understanding of correlated electron systems is vexed by the complexity of their interactions. Heavy fermion compounds are archetypal examples of this physics, leading to exotic properties that weave magnetism, superconductivity and strange metal behavior together. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 1758
    por Ackerstaff, K., Alexander, G., Allison, John, Altekamp, N., Anderson, K.J., Anderson, S., Arcelli, S., Asai, S., Ashby, S.F., Axen, D., Azuelos, G., Ball, A.H., Barberio, E., Barlow, Roger J., Bartoldus, R., Batley, J.R., Baumann, S., Bechtluft, J., Behnke, T., Bell, Kenneth Watson, Bella, G., Bentvelsen, S., Bethke, S., Betts, S., Biebel, O., Biguzzi, A., Bird, S.D., Blobel, V., Bloodworth, I.J., Bobinski, M., Bock, P., Bohme, J., Boutemeur, M., Braibant, S., Bright-Thomas, P., Brown, Robert M., Burckhart, H.J., Burgard, C., Burgin, R., Capiluppi, P., Carnegie, R.K., Carter, A.A., Carter, J.R., Chang, C.Y., Charlton, David G., Chrisman, D., Ciocca, C., Clarke, P.E.L., Clay, E., Cohen, I., Conboy, J.E., Cooke, O.C., Couyoumtzelis, C., Coxe, R.L., Cuffiani, M., Dado, S., Dallavalle, G.Marco, Davis, R., De Jong, S., del Pozo, L.A., De Roeck, A., Desch, K., Dienes, B., Dixit, M.S., Doucet, M., Dubbert, J., Duchovni, E., Duckeck, G., Duerdoth, I.P., Eatough, D., Estabrooks, P.G., Etzion, E., Evans, H.G., Fabbri, F., Fanfani, A., Fanti, M., Faust, A.A., Fiedler, F., Fierro, M., Fischer, H.M., Fleck, I., Folman, R., Furtjes, A., Futyan, D.I., Gagnon, P., Gary, J.W., Gascon, J., Gascon-Shotkin, S.M., Geich-Gimbel, C., Geralis, T., Giacomelli, G., Giacomelli, P., Gibson, V., Gibson, W.R., Gingrich, D.M., Glenzinski, D., Goldberg, J., Gorn, W., Grandi, C., Gross, E., Grunhaus, J., Gruwe, M., Hanson, G.G., Hansroul, M., Hapke, M., Hargrove, C.K., Hartmann, C., Hauschild, M., Hawkes, C.M., Hawkings, R., Hemingway, R.J., Herndon, M., Herten, G., Heuer, R.D., Hildreth, M.D., Hill, J.C., Hillier, S.J., Hobson, P.R., Hocker, James Andrew, Homer, R.J., Honma, A.K., Horvath, D., Hossain, K.R., Howard, R., Huntemeyer, P., Igo-Kemenes, P., Imrie, D.C., Ishii, K., Jacob, F.R., Jawahery, A., Jeremie, H., Jimack, M., Joly, A., Jones, C.R., Jovanovic, P., Junk, T.R., Karlen, D., Kartvelishvili, V., Kawagoe, K., Kawamoto, T., Kayal, P.I., Keeler, R.K., Kellogg, R.G., Kennedy, B.W., Klier, A., Kluth, S., Kobayashi, T., Kobel, M., Koetke, D.S., Kokott, T.P., Kolrep, M., Komamiya, S., Kowalewski, Robert V., Kress, T., Krieger, P., von Krogh, J., Kyberd, P., Lafferty, G.D., Lanske, D., Lauber, J., Lautenschlager, S.R., Lawson, I., Layter, J.G., Lazic, D., Lee, A.M., Lefebvre, E., Lellouch, D., Letts, J., Levinson, L., Liebisch, R., List, B., Littlewood, C., Lloyd, A.W., Lloyd, S.L., Loebinger, F.K., Long, G.D., Losty, M.J., Ludwig, J., Lui, D., Macchiolo, A., Macpherson, A., Mannelli, M., Marcellini, S., Markopoulos, C., Martin, A.J., Martin, J.P., Martinez, G., Mashimo, T., Mattig, Peter, McDonald, W.John, McKenna, J., Mckigney, E.A., McMahon, T.J., McPherson, R.A., Meijers, F., Menke, S., Merritt, F.S., Mes, H., Meyer, J., Michelini, A., Mihara, S., Mikenberg, G., Miller, D.J., Mir, R., Mohr, W., Montanari, A., Mori, T., Nagai, K., Nakamura, I., Neal, H.A., Nellen, B., Nisius, R., O'Neale, S.W., Oakham, F.G., Odorici, F., Ogren, H.O., Oreglia, M.J., Orito, S., Palinkas, J., Pasztor, G., Pater, J.R., Patrick, G.N., Patt, J., Perez-Ochoa, R., Petzold, S., Pfeifenschneider, P., Pilcher, J.E., Pinfold, J., Plane, David E., Poffenberger, P., Poli, B., Polok, J., Przybycien, M., Rembser, C., Rick, H., Robertson, S., Robins, S.A., Rodning, N., Roney, J.M., Roscoe, K., Rossi, A.M., Rozen, Y., Runge, K., Runolfsson, O., Rust, D.R., Sachs, K., Saeki, T., Sahr, O., Sang, W.M., Sarkisian, E.K.G., Sbarra, C., Schaile, A.D., Schaile, O., Scharf, F., Scharff-Hansen, P., Schieck, J., Schmitt, B., Schmitt, S., Schoning, A., Schorner, T., Schroder, Matthias, Schumacher, M., Schwick, C., Scott, W.G., Seuster, R., Shears, T.G., Shen, B.C., Shepherd-Themistocleous, C.H., Sherwood, P., Siroli, G.P., Sittler, A., Skuja, A., Smith, A.M., Snow, G.A., Sobie, R., Soldner-Rembold, S., Sproston, M., Stahl, A., Stephens, K., Steuerer, J., Stoll, K., Strom, David M., Strohmer, R., Tafirout, R., Talbot, S.D., Tanaka, S., Taras, P., Tarem, S., Teuscher, R., Thiergen, M., Thomson, M.A., von Torne, E., Torrence, E., Towers, S., Trigger, I., Trocsanyi, Z., Tsur, E., Turcot, A.S., Turner-Watson, M.F., Van Kooten, Rick J., Vannerem, P., Verzocchi, M., Vikas, P., Voss, H., Wackerle, F., Wagner, A., Ward, C.P., Ward, D.R., Watkins, P.M., Watson, A.T., Watson, N.K., Wells, P.S., Wermes, N., White, J.S., Wilson, G.W., Wilson, J.A., Wyatt, T.R., Yamashita, S., Yekutieli, G., Zacek, V., Zer-Zion, D.
    Publicado 1998
    “…Upper limits on the product of cross section and branching ratios, sigma(e+e- to XY) * BR(X to gamma gamma) * BR(Y to f fbar) as low as 70fb are obtained over the M(X) range 10 - 170 GeV for the case where 10 < M(Y) < 160 GeV and M(X)+M(Y) > 90 GeV, independent of the nature of Y provided it decays to a fermion pair and has negligible width. Higgs scalars which couple only to gauge bosons at Standard Model strength are ruled out up to a mass of 90.0 GeV at the 95% confidence level. …”
    Enlace del recurso
    Enlace del recurso
  19. 1759
    por CMS Collaboration
    Publicado 2011
    “…Reinterpreted in the context of the standard model with four fermion families a Higgs boson with a mass in the range 138 -162 $\GeVcc$ and 178-502 $\GeVcc$ is excluded at 95\% CL.…”
    Enlace del recurso
  20. 1760
    por CMS Collaboration
    Publicado 2011
    “…Reinterpreted in the context of the standard model with four fermion families a Higgs boson with a mass in the range 120-520 $\GeVcc$ is excluded at 95\% CL.…”
    Enlace del recurso
Herramientas de búsqueda: RSS