Mostrando 321 - 340 Resultados de 17,239 Para Buscar '"Inception"', tiempo de consulta: 0.30s Limitar resultados
  1. 321
    “…Our experimental results of the supervised histopathological image classification of breast cancer and the comparison to the results from other studies demonstrate that Inception_V3 and Inception_ResNet_V2 based histopathological image classification of breast cancer is superior to the existing methods. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 322
    “…We searched the following databases: AMED (inception to June 2005), Campbell Collaboration (inception to June 2005), CinAhl (inception to June 2005), Cochrane Library (inception to June 2005), Embase (inception to June 2005), ERIC (inception to June 2005), MedLine (inception to June 2005), and NHS EED (inception to June 2005). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Texto
  3. 323
    “…Two-stream convolutional network models based on deep learning were proposed, including inflated 3D convnet (I3D) and temporal segment networks (TSN) whose feature extraction network is Residual Network (ResNet) or the Inception architecture (e.g., Inception with Batch Normalization (BN-Inception), InceptionV3, InceptionV4, or InceptionResNetV2) to achieve pig behavior recognition. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 324
    por Pang, Xiaojia
    Publicado 2022
    “…Among them, the number of interactive learning elements inception modules used by the network models GoogLeNet, Inception-v2, Inception-v4, and Inception-ResNet-v2 are 9, 10, 14, and 20, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 325
    “…Then, multiple transfer learning models, such as Resnet50, InceptionV3, and Inception Resnet, were used for fine-tuning. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 326
    “…Inception-ResNet-V2 achieved the highest AUC (97.62%) similar to the model ensemble, followed by InceptionV3 (AUC of 96.82%) and VGG-16 (AUC 96.03%). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 327
    “…Similarly, the GWO-DenseNet, GWO-InceptionV3 and GWO-VGG16 + InceptionV3 models result an AUC-ROC score of 100 for SPECT DaTscan dataset.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 328
    “…We trained cross-validated ResNet50, DenseNet201, InceptionV3, and InceptionResNetV2 models on 1150 pediatric tympanic membrane images from otoendoscopes to classify OME. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 329
    “…In a nutshell, this research employed an Inception-V3 and InceptionResnet-V2 strategy for melanoma recognition. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 330
    “…Simultaneously, the InceptionTime model network shows its potential in dealing with data imbalances.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 331
    “…The categorized images were then processed in a training, validation, and test run by the ImageNet pretrained CNN frameworks (Inception ResNet v2, Inception v3, ResNet152, Xception) in different pixel sizes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 332
    “…This paper investigates the classification of radiographic images with eleven convolutional neural network (CNN) architectures (GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3, ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception-ResNet-v2). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 333
    “…RESULTS: from the results of all 12 pre-trained deep learning model, five models that have highest validation accuracy were DenseNet169, DenseNet201, InceptionV3, DenseNet121 and InceptionRestNetV2, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 334
    “…The main mechanism in RISE-Net is the stacked Residual, Inception, Squeeze and Excitation (RISE) blocks. This classification network achieved an accuracy of 90.34% and a F1 score of 90.39% and outperformed other state-of-the-art architectures, such as VGG-16, Inception, ResNet-50, ReNet-Inception, SE-ResNet, and SE-Inception. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 335
    “…The highest classification accuracy of 97.57% was achieved by the Inception-v3 model based on the T2WI data. In addition, Inception-v3 performed statistically significantly better than the Alexnet architecture (p<0.05). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 336
    “…We divided the lesions and images into training and testing sets at a ratio of 7: 3. The Inception V3 model was pretrained by the training dataset. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 337
    “…The GAN with nonlinear identity blocks achieved an inception score of 14.32 and a Fréchet inception distance of 41.86 in the augmenting process. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 338
    “…Training strategies include training the last layer of Google's Inceptions, training the network from scratch, and fine-tunning the parameters for our data using two pre-trained version of Google's Inception architectures, Inception-V1 and Inception-V3. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 339
    “…Untrained and pretrained deep convolutional neural network models for Inception V3, ResNet50, and DenseNet 121 were each employed. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 340
    “…DenseNet121 and VGG16 attained a sensitivity of 99.94%, while InceptionV3 and InceptionResNetV2 achieved a specificity of 100%. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS