Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Archivos diocesanos
1
Archivos episcopales
1
Clasificación documental
1
Crítica e interpretación
1
Cuadro de clasificación
1
Género
1
Líneas de investigación
1
Niños en el arte
1
Pintores españoles
1
Series documentales
1
Temas, motivos
1
antropología lingüística
1
discourse
1
discurso
1
framework
1
genre
1
intertextualidad
1
intertextuality
1
linguistic anthropology
1
marco
1
-
321“…Our experimental results of the supervised histopathological image classification of breast cancer and the comparison to the results from other studies demonstrate that Inception_V3 and Inception_ResNet_V2 based histopathological image classification of breast cancer is superior to the existing methods. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
322por Mills, Edward J, Nachega, Jean B, Bangsberg, David R, Singh, Sonal, Rachlis, Beth, Wu, Ping, Wilson, Kumanan, Buchan, Iain, Gill, Christopher J, Cooper, Curtis“…We searched the following databases: AMED (inception to June 2005), Campbell Collaboration (inception to June 2005), CinAhl (inception to June 2005), Cochrane Library (inception to June 2005), Embase (inception to June 2005), ERIC (inception to June 2005), MedLine (inception to June 2005), and NHS EED (inception to June 2005). …”
Publicado 2006
Enlace del recurso
Enlace del recurso
Enlace del recurso
Texto -
323“…Two-stream convolutional network models based on deep learning were proposed, including inflated 3D convnet (I3D) and temporal segment networks (TSN) whose feature extraction network is Residual Network (ResNet) or the Inception architecture (e.g., Inception with Batch Normalization (BN-Inception), InceptionV3, InceptionV4, or InceptionResNetV2) to achieve pig behavior recognition. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
324por Pang, Xiaojia“…Among them, the number of interactive learning elements inception modules used by the network models GoogLeNet, Inception-v2, Inception-v4, and Inception-ResNet-v2 are 9, 10, 14, and 20, respectively. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
325por Gouda, Walaa, Sama, Najm Us, Al-Waakid, Ghada, Humayun, Mamoona, Jhanjhi, Noor Zaman“…Then, multiple transfer learning models, such as Resnet50, InceptionV3, and Inception Resnet, were used for fine-tuning. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
326por Klontzas, Michail E., Stathis, Ioannis, Spanakis, Konstantinos, Zibis, Aristeidis H., Marias, Kostas, Karantanas, Apostolos H.“…Inception-ResNet-V2 achieved the highest AUC (97.62%) similar to the model ensemble, followed by InceptionV3 (AUC of 96.82%) and VGG-16 (AUC 96.03%). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
327por Mallik, Saurav, Majhi, Babita, Kashyap, Aarti, Mohanty, Siddarth, Dash, Sujata, Li, Aimin, Zhao, Zhongming“…Similarly, the GWO-DenseNet, GWO-InceptionV3 and GWO-VGG16 + InceptionV3 models result an AUC-ROC score of 100 for SPECT DaTscan dataset.…”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
328por Shim, Jae-Hyuk, Sunwoo, Woongsang, Choi, Byung Yoon, Kim, Kwang Gi, Kim, Young Jae“…We trained cross-validated ResNet50, DenseNet201, InceptionV3, and InceptionResNetV2 models on 1150 pediatric tympanic membrane images from otoendoscopes to classify OME. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
329“…In a nutshell, this research employed an Inception-V3 and InceptionResnet-V2 strategy for melanoma recognition. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
330“…Simultaneously, the InceptionTime model network shows its potential in dealing with data imbalances.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
331“…The categorized images were then processed in a training, validation, and test run by the ImageNet pretrained CNN frameworks (Inception ResNet v2, Inception v3, ResNet152, Xception) in different pixel sizes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
332por Ananda, Ananda, Ngan, Kwun Ho, Karabağ, Cefa, Ter-Sarkisov, Aram, Alonso, Eduardo, Reyes-Aldasoro, Constantino Carlos“…This paper investigates the classification of radiographic images with eleven convolutional neural network (CNN) architectures (GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3, ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception-ResNet-v2). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
333por Vichianin, Yudthaphon, Imsap, Chayakorn, Niempinijsakul, Thanaporn, Semprawat, Phimsuwaree, Jitsongserm, Thunyani, Maklad, Sukanya, Youkhong, Thanathip, Ngamsombat, Chanon, Ina, Natee“…RESULTS: from the results of all 12 pre-trained deep learning model, five models that have highest validation accuracy were DenseNet169, DenseNet201, InceptionV3, DenseNet121 and InceptionRestNetV2, respectively. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
334“…The main mechanism in RISE-Net is the stacked Residual, Inception, Squeeze and Excitation (RISE) blocks. This classification network achieved an accuracy of 90.34% and a F1 score of 90.39% and outperformed other state-of-the-art architectures, such as VGG-16, Inception, ResNet-50, ReNet-Inception, SE-ResNet, and SE-Inception. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
335“…The highest classification accuracy of 97.57% was achieved by the Inception-v3 model based on the T2WI data. In addition, Inception-v3 performed statistically significantly better than the Alexnet architecture (p<0.05). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
336por Wang, Shuwen, Zhou, Leilei, Li, Xiaoran, Tang, Jie, Wu, Jing, Yin, Xindao, Chen, Yu-Chen, Lu, Lingquan“…We divided the lesions and images into training and testing sets at a ratio of 7: 3. The Inception V3 model was pretrained by the training dataset. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
337por Alruily, Meshrif, Said, Wael, Mostafa, Ayman Mohamed, Ezz, Mohamed, Elmezain, Mahmoud“…The GAN with nonlinear identity blocks achieved an inception score of 14.32 and a Fréchet inception distance of 41.86 in the augmenting process. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
338por Khosravi, Pegah, Kazemi, Ehsan, Imielinski, Marcin, Elemento, Olivier, Hajirasouliha, Iman“…Training strategies include training the last layer of Google's Inceptions, training the network from scratch, and fine-tunning the parameters for our data using two pre-trained version of Google's Inception architectures, Inception-V1 and Inception-V3. …”
Publicado 2017
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
339“…Untrained and pretrained deep convolutional neural network models for Inception V3, ResNet50, and DenseNet 121 were each employed. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
340“…DenseNet121 and VGG16 attained a sensitivity of 99.94%, while InceptionV3 and InceptionResNetV2 achieved a specificity of 100%. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto