-
21por Zhang, Zhijie, Chen, Dongmei, Liu, Wenbao, Racine, Jeffrey S., Ong, SengHuat, Chen, Yue, Zhao, Genming, Jiang, Qingwu“…Monte Carlo simulations show that the proposed method performs substantially better than the traditional (i.e., frequency-based) kernel density estimation (trKDE) which has been used in applied settings while two illustrative examples demonstrate that the proposed approach can yield superior results compared to the popular trKDE approach. …”
Publicado 2011
Enlace del recurso
Enlace del recurso
Enlace del recurso
Texto -
22por Fraser, Louise D., Zhao, Yuan, Lutalo, Pamela M. K., D'Cruz, David P., Cason, John, Silva, Joselli S., Dunn‐Walters, Deborah K., Nayar, Saba, Cope, Andrew P., Spencer, Jo“…We observed reduced frequency of rearrangements of the kappa‐deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. …”
Publicado 2015
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
23por Kraml, Johannes, Hofer, Florian, Quoika, Patrick K., Kamenik, Anna S., Liedl, Klaus R.“…Furthermore, the frontend allows full access to the C++ backend, so that the KDE can be used on any binnable one-dimensional input data. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
24por Lee, Joon, Nemati, Shamim, Silva, Ikaro, Edwards, Bradley A, Butler, James P, Malhotra, Atul“…RESULTS: In the simulation, KDE detected increased coupling strength at the lowest SNR among the three methods. …”
Publicado 2012
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
25“…RESULTS: We evaluated the algorithm by kernel density estimation (KDE) and support vector machine (SVM) methods. Sensitivity and specificity for KDE were 0.939 and 0.912, respectively. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
26por Liu, Tao, Xu, Yongtao, Mo, Bai, Shi, Jinze, Cheng, Yachang, Zhang, Weiwei, Lei, Fumin“…The average 100% minimum convex polygon (MCP) home range size was 10.05 ± 1.17 ha, and the estimated KDE core area (fiexed kernel density estimator, KDE) size was 7.84 ± 1.18 ha. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
27“…Its 3D shape becomes apparent when it is rotated about an axis parallel to the screen (KDE). The relative motion of the points gives depth information but perspective information is not present. …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
28por Behrouzi, Sasha, Dix, Marcel, Karampanah, Fatemeh, Ates, Omer, Sasidharan, Nissy, Chandna, Swati, Vu, Binh“…The use of KDE improves performance when healthy training data are contaminated. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
29
-
30
-
31
-
32
-
33“…ANNs were trained by cross entropy (CE) values estimated between probabilities of showing certain levels of immunologic parameters and a reference mode probability proposed by kernel density estimation (KDE). The weight decay regularization parameter of the ANNs was determined by 10-fold cross-validation. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
34por Kenchington, Ellen, Murillo, Francisco Javier, Lirette, Camille, Sacau, Mar, Koen-Alonso, Mariano, Kenny, Andrew, Ollerhead, Neil, Wareham, Vonda, Beazley, Lindsay“…We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify “significant concentrations” of biomass, which we equate to VMEs. …”
Publicado 2014
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
35por Ohlert, Timothy, Kimmel, Kaitlin, Avolio, Meghan, Chang, Cynthia, Forrestel, Elisabeth, Gerstner, Benjamin, Hobbie, Sarah E., Komastu, Kimberly, Reich, Peter, Whitney, Kenneth“…We will determine how eight functional diversity metrics (functional richness, functional evenness, functional divergence, functional dispersion, kernel density estimation (KDE) richness, KDE evenness, KDE dispersion, Rao’s Q) differ based on the number of traits used in the metric calculation and on the correlation of traits when holding the number of traits constant. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36
-
37“…RESULTS: Although originally designed for GPS tracking studies, dBBMMs outperformed MCPs and KDE h(ref) across all tracking regimes in accurately revealing movement pathways, with only KDE LSCV performing comparably at some higher frequency sampling regimes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
38
-
39
-
40