Mostrando 161 - 180 Resultados de 475 Para Buscar '"KDE"', tiempo de consulta: 0.50s Limitar resultados
  1. 161
    “…METHODS: The knowledge‐based automated DVH prediction module was developed with kernel density estimation (KDE) method and applied for Pinnacle(3) treatment planning system. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 162
    por Yang, Wenhao, Liu, Yue, Liu, Fanming
    Publicado 2020
    “…An improved segmented simulated annealing method is used to decrease the computation load while the Kernel Density Estimator (KDE) method is used to filter out the false optimum candidates. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 163
    “…Then we combine the advantages of kernel density estimation (KDE) and mutual information (MI) and put forward a KDEMI classifier. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 164
    “…We used Time Series Segmented Residual Trends (TSS-RESTREND), Mann–Kendall Test Statistics, Sen’s Slope, ensemble, Kernel Density Estimation (KDE), and Pearson correlation methods. Our results revealed (i) widespread vegetation browning along elephant migration routes and within National Parks, (ii) Pearson correlation (p-value = 5.5 × 10(−8)) showed that vegetation browning areas do not sustain high population densities of elephants. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 165
    por Cano-Ott, D, Plukis, A, Eleftheriadis, C, Leeb, H, Calvino, F, Herrera-Martinez, A, Savvidis, I, Vlachoudis, V, Haas, B, Abbondanno, U, Vannini, G, Oshima, M, Gramegna, F, Wiescher, M, Pigni, M T, Wiendler, H, Mengoni, A, Quesada, J, Becvar, F, Rosetti, M, Cennini, P, Mosconi, M, Duran, I, Rauscher, T, Ketlerov, V, Couture, A, Capote, R, Sarchiapone, L, Vlastou, R, Domingo-Pardo, C, Pavlopoulos, P, Karamanis, D, Krticka, M, Griesmayer, E, Jericha, E, Ferrari, A, Martinez, T, Oberhummer, H, Karadimos, D, Plompen, A, Mendoza, E, Terlizzi, R, Cortes, G, Cox, J, Voss, F, Pretel, C, Colonna, N, Berthoumieux, E, Dolfini, R, Vaz, P, Heil, M, Lopes, I, Lampoudis, C, Walter, S, Calviani, M, Gonzalez-Romero, E, Stephan, C, Tain, J L, Belloni, F, Igashira, M, Papachristodoulou, C, Aerts, G, Tavora, L, Milazzo, P M, Rudolf, G, Andrzejewski, J, Villamarin, D, Ferreira-Marques, R, Meaze, M H, O'Brien, S, Gunsing, F, Reifarth, R, Perrot, L, Lindote, A, Neves, F, Poch, A, Konovalov, V, Kerveno, M, Marques, L, Rubbia, C, Koehler, P, Dahlfors, M, Wisshak, K, Fujii, K, De Albornoz, A C, Salgado, J, Dridi, W, Ventura, A, Andriamonje, S, Dillman, I, Assimakopoulos, P, Ferrant, L, Lozano, M, Patronis, N, Chiaveri, E, Guerrero, C, Kadi, Y, Vicente, M C, Praena, J, Baumann, P, Moreau, C, Kappeler, F, Rullhusen, P, Furman, W, David, S, Marrone, S, Paradela, C, Audouin, L, Tassan-Got, L, Alvarez-Velarde, F, Massimi, C, Mastinu, P, Isaev, S, Pancin, J, Papadopoulos, C, Tagliente, G, Alvarez, H, Haight, R, Goverdovski, A, Chepel, V, Plag, R, Kossionides, E, Badurek, G, Marganiec, J, Lukic, S, Frais-Koelbl, H, Pavlik, A, Goncalves, I
    Publicado 2011
    Enlace del recurso
    Enlace del recurso
  6. 166
    por Rinella, G Aglieri, Andronic, A, Antonelli, M, Baccomi, R, Ballabriga, R, Barbero, M, Barrillon, P, Baudot, J, Becht, P, Benotto, F, Beole, S, Bertolone, G, Besson, A, Bialas, W, Borghello, G, Braach, J, Buckland, M, Bugiel, S, Buschmann, E, Camerini, P, Campbell, M, Carnesecchi, F, Cecconi, L, Charbon, E, Chauhan, A, Colledani, C, Contin, G, Dannheim, D, Dort, K, de Melo, J, Deng, W, De Robertis, G, Di Mauro, A, Martin, A Dorda, Dorokhov, A, Dorosz, P, Eberwein, G, Bitar, Z El, Fang, X, Fenigstein, A, Ferrero, C, Fougeron, D, Gajanana, D, Goffe, M, Gonella, L, Grelli, A, Gromov, V, Habib, A, Haim, A, Hansen, K, Hasenbichler, J, Hillemanns, H, Hong, G H, Hu, C, Isakov, A, Jaaskelainen, K, Junique, A, Kotliarov, A, Kremastiotis, I, Krizek, F, Kluge, A, Kluit, R, Kucharska, G, Kugathasan, T, Kwon, Y, La Rocca, P, Lautner, L, Leitao, P, Lim, B -H, Loddo, F, Mager, M, Marras, D, Martinengo, P, Masciocchi, S, Mathew, S, Menzel, M W, Morel, F, Mulyanto, B, Munker, M, Musa, L, Nakamura, M, Pangaud, P, Perciballi, S, Pham, H, Piro, F, Prino, F, Rachevski, S, Rebane, K, Reckleben, C, Reidt, F, Ricci, R, Russo, R, Sanna, I, Sarritzu, V, Savino, U, Schledewitz, D, Sedgwick, I, Senyukov, S, Snoeys, W, Soltveit, H K, Sonneveld, J, Soudier, J, Stachel, J, Suzuki, M, Svihra, P, Suljic, M, Takahashi, N, Termo, G, Tiltmann, N, Toledano, E, Triffiro, A, Turcato, A, Usai, G, Valin, I, Villani, A, Van Beelen, J B, Vassilev, M D, Vernieri, C, Vitkovskiy, A, Wu, Y, Yelkenci, A, Yuncu, A
    Publicado 2023
    Enlace del recurso
    Enlace del recurso
  7. 167
  8. 168
    “…Prediction models employed autoencoder networks and the kernel density estimation (KDE) method for finding the threshold to detect anomalies. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 169
    “…Here, we use kernel density estimation (KDE) to analyse the spatial patterns of check-in spots (or places of interest, POIs) and employ the Getis-Ord [Image: see text] method to identify the hot spots for different types of POIs in Shenzhen, China. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 170
    “…In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 171
    “…We found that an isolate had higher expression of kpnF (SMR family) and kdeA (MATE family) pump genes relative to RND family pump genes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 172
    “…This framework quantifies the spatiotemporal association among collisions, by comparing the results of different approaches (including Kernel Density Estimation (KDE), Natural Breaks Classification (NBC), and Knox test). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 173
  14. 174
    por Xiao, Lingling
    Publicado 2022
    “…The use value of intangible cultural heritage is analyzed and considered according to IPA entity model analysis, kernel density estimation (KDE), and gray correlation calculation (calculated by using IPA analysis conclusion). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 175
    “…Employing the kernel density estimation (KDE) method, the street centrality of the traffic network vis-à-vis the urban LUI was rasterized into the same spatial analysis framework. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 176
    por Karlitschek, Frank
    Publicado 2013
    “…</p> <h4> About the speaker</h4> <p align="justify"> Frank Karlitschek is a long time open source contributor and former board member of the KDE e.V. He managed engineering teams for over 10 years in different companies. …”
    Enlace del recurso
  17. 177
  18. 178
    por Demaria, N, Barbero, M B, Fougeron, D, Gensolen, F, Godiot, S, Menouni, M, Pangaud, P, Rozanov, A, Wang, A, Bomben, M, Calderini, G, Crescioli, F, Dortz, O Le, Marchiori, G, Dzahini, D, Rarbi, F E, Gaglione, R, Gonella, L, Hemperek, T, Huegging, F, Karagounis, M, Kishishita, T, Krueger, H, Rymaszewski, P, Wermes, N, Ciciriello, F, Corsi, F, Marzocca, C, De Robertis, G, Loddo, F, Licciulli, F, Andreazza, A, Liberali, V, Shojaii, S, Stabile, A, Bagatin, M, Bisello, D, Mattiazzo, S, Ding, L, Gerardin, S, Giubilato, P, Neviani, A, Paccagnella, A, Vogrig, D, Wyss, J, Bacchetta, N, Canio, F De, Gaioni, L, Nodari, B, Manghisoni, M, Re, V, Traversi, G, Comotti, D, Ratti, L, Vacchi, C, Beccherle, R, Bellazzini, R, Magazzu, G, Minuti, M, Morsani, F, Palla, F, Poulios, S, Fanucci, L, Rizzi, A, Saponara, S, Androsov, K, Bilei, G M, Menichelli, M, Conti, E, Marconi, S, Passeri, D, Placidi, P, Della Casa, G, Mazza, G, Rivetti, A, Rolo, M D Da Rocha, Monteil, E, Pacher, L, Gajanana, D, Gromov, V, Hessey, N, Kluit, R, Zivkovic, V, Havranek, M, Janoska, Z, Marcisovsky, M, Neue, G, Tomasek, L, Kafka, V, Sicho, P, Vrba, V, Vila, I, Lopez-Morillo, E, Aguirre, M A, Palomo, F R, Muñoz, F, Abbaneo, D, Christiansen, J, Dannheim, D, Dobos, D, Linssen, L, Pernegger, H, Valerio, P, Alipour Tehrani, N, Bell, S, Prydderch, M L, Thomas, S, Christian, D C, Fahim, F, Hoff, J, Lipton, R, Liu, T, Zimmerman, T, Garcia-Sciveres, M, Gnani, D, Mekkaoui, A, Gorelov, I, Hoeferkamp, M, Seidel, S, Toms, K, De Witt, J N, Grillo, A, Paternò, A
    Publicado 2016
    Enlace del recurso
    Enlace del recurso
  19. 179
    por Gaioni, L, De Canio, F, Nodari, B, Manghisoni, M, Re, V, Traversi, G, Barbero, M B, Fougeron, D, Gensolen, F, Godiot, S, Menouni, M, Pangaud, P, Rozanov, A, Wang, A, Bomben, M, Calderini, G, Crescioli, F, Le Dortz, O, Marchiori, G, Dzahini, D, Rarbi, F E, Gaglione, R, Gonella, L, Hemperek, T, Huegging, F, Karagounis, M, Kishishita, T, Krueger, H, Rymaszewski, P, Wermes, N, Ciciriello, F, Corsi, F, Marzocca, C, De Robertis, G, Loddo, F, Licciulli, F, Andreazza, A, Liberali, V, Shojaii, S, Stabile, A, Bagatin, M, Bisello, D, Mattiazzo, S, Ding, L, Gerardin, S, Giubilato, P, Neviani, A, Paccagnella, A, Vogrig, D, Wyss, J, Bacchetta, N, Della Casa, G, Demaria, N, Mazza, G, Rivetti, A, Da Rocha Rolo, M D, Comotti, D, Ratti, L, Vacchi, C, Beccherle, R, Bellazzini, R, Magazzu, G, Minuti, M, Morsani, F, Palla, F, Poulios, S, Fanucci, L, Rizzi, A, Saponara, S, Androsov, K, Bilei, G M, Menichelli, M, Conti, E, Marconi, S, Passeri, D, Placidi, P, Monteil, E, Pacher, L, Paternò, A, Gajanana, D, Gromov, V, Hessey, N, Kluit, R, Zivkovic, V, Havranek, M, Janoska, Z, Marcisovsky, M, Neue, G, Tomasek, L, Kafka, V, Sicho, P, Vrba, V, Vila, I, Lopez-Morillo, E, Aguirre, M A, Palomo, F R, Muñoz, F, Abbaneo, D, Christiansen, J, Dannheim, D, Dobos, D, Linssen, L, Pernegger, H, Valerio, P, Alipour Tehrani, N, Bell, S, Prydderch, M L, Thomas, S, Christian, D C, Fahim, F, Hoff, J, Lipton, R, Liu, T, Zimmerman, T, Garcia-Sciveres, M, Gnani, D, Mekkaoui, A, Gorelov, I, Hoeferkamp, M, Seidel, S, Toms, K, De Witt, J N, Grillo, A
    Publicado 2017
    Enlace del recurso
    Enlace del recurso
  20. 180
    por Liu, Jialong, Zhang, Rui, Xiong, Jianyin
    Publicado 2023
    “…By combining the LSSVM with a kernel density estimation (KDE) method, we further establish an interval prediction model, which can provide uncertainty information and viable option for decision-makers. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS