Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Inteligencia artificial
43
Historia
38
Filosofía
27
Novela alemana
18
Cognición
15
Política económica
14
Aspectos sociales
13
Modelos matemáticos
13
Arquitectura
12
Ciencia cognoscitiva
12
Urbanismo
12
Operas
11
Literatura alemana
10
Matemáticas
10
Programación (Computadoras)
10
Redes neurales (Informática)
10
Conducta animal
9
Estudio y enseñanza
9
Música para piano
9
Simulación por computadoras
9
Economía
8
Innovaciones tecnológicas
8
Procesamiento de datos
8
Robótica
8
Semántica
8
Teatro alemán
8
Aspectos económicos
7
Descripciones y viajes
7
Filosofía moderna
7
Lenguaje y lenguas
7
-
4781
-
4782
-
4783
-
4784
-
4785
-
4786por Ryyppö, Elisa, Glerean, Enrico, Brattico, Elvira, Saramäki, Jari, Korhonen, OnervaEnlace del recurso
Publicado 2018
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
4787
-
4788por Busquets-Cortés, Carla, Capó, Xavier, Bibiloni, Maria del Mar, Martorell, Miquel, Ferrer, Miguel D., Argelich, Emma, Bouzas, Cristina, Carreres, Sandra, Tur, Josep A., Pons, Antoni, Sureda, Antoni“…No significant changes were found in the activities of antioxidant enzymes and in the expression of structural (MitND5) and mitochondrial dynamic-related (PGC1α and Mitofusins1/2.) proteins. …”
Publicado 2018
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
4789“…Experiments on the arrhythmia data of MIT-BIH ADB confirmed reliable fiducial point detection results for various types of QRS complexes.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
4790
-
4791“…AVAILABILITY AND IMPLEMENTATION: Full source code and datasets are available at http://opal.csail.mit.edu and https://github.com/yunwilliamyu/opal. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
4792por Aoto, Mamoru, Iwashita, Akiho, Mita, Kanako, Ohkubo, Nobutaka, Tsujimoto, Yoshihide, Mitsuda, Noriaki“…Furthermore, siRNA against mouse TfR1 were found to suppress the enucleation of mouse fetal liver‐derived erythroblasts, and the endocytosis inhibitor MitMAB inhibited enucleation, hemoglobin synthesis, and the internalization of TfR1 promoted by both types of stimuli. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
4793
-
4794por Knox, Joseph E., Harris, Kameron Decker, Graddis, Nile, Whitesell, Jennifer D., Zeng, Hongkui, Harris, Julie A., Shea-Brown, Eric, Mihalas, StefanEnlace del recurso
Publicado 2018
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
4795por Erdenebayar, Urtnasan, Kim, Hyeonggon, Park, Jong-Uk, Kang, Dongwon, Lee, Kyoung-Joung“…The training and test sets consisted of the two AF and one normal dataset from the MIT-BIH database. RESULTS: The proposed CNN model for the automatic prediction of AF achieved a high performance with a sensitivity of 98.6%, a specificity of 98.7%, and an accuracy of 98.7%. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
4796“…Recently, peroxisome-mitochondria contact sites (PerMit) have been reported and among Permit tethers, one component of the ERMES complex (Mdm34) was shown to interact with the peroxin Pex11, suggesting that the ERMES complex or part of it may be involved in two membrane contact sites (ER-mitochondria and peroxisome- mitochondria). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
4797
-
4798
-
4799“…AVAILABILITY AND IMPLEMENTATION: Freely available under the MIT license at https://github.com/e-oerton/disease-similarity-fusion SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
4800“…The aim of this study is to design GoogLeNet deep neural network architecture by expanding the kernel size of the inception layer and combining the convolution layers to classify the electrocardiogram (ECG) beats into a normal sinus rhythm, premature ventricular contraction, atrial premature contraction, and right/left bundle branch block arrhythmia. Based on testing MIT-BIH arrhythmia benchmark databases, the scope of training/test ECG data was configured by covering at least three and seven R-peak features, and the proposed extended-GoogLeNet architecture can classify five distinct heartbeats; normal sinus rhythm (NSR), premature ventricular contraction (PVC), atrial premature contraction (APC), right bundle branch block (RBBB), and left bundle brunch block(LBBB), with an accuracy of 95.94%, an error rate of 4.06%, a maximum sensitivity of 96.9%, and a maximum positive predictive value of 95.7% for judging a normal or an abnormal beat with considering three ECG segments; an accuracy of 98.31%, a sensitivity of 88.75%, a specificity of 99.4%, and a positive predictive value of 94.4% for classifying APC from NSR, PVC, APC beats, whereas the error rate for misclassifying APC beat was relative low at 6.32%, compared with previous research efforts.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto