-
121por Huang, Liang-Chin, Ross, Karen E., Baffi, Timothy R., Drabkin, Harold, Kochut, Krzysztof J., Ruan, Zheng, D’Eustachio, Peter, McSkimming, Daniel, Arighi, Cecilia, Chen, Chuming, Natale, Darren A., Smith, Cynthia, Gaudet, Pascale, Newton, Alexandra C., Wu, Cathy, Kannan, Natarajan“…In this study, we employ federated queries linking information from the Protein Kinase Ontology, iPTMnet, Protein Ontology, neXtProt, and the Mouse Genome Informatics to identify key knowledge gaps in the functional coverage of the human kinome and prioritize understudied kinases, cancer variants and post-translational modifications (PTMs) for functional studies. …”
Publicado 2018
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
122“…We have compared Inception V3, Xception, and ResNeXt models and examined their accuracy. To analyze the model performance, 6432 chest x-ray scans samples have been collected from the Kaggle repository, out of which 5467 were used for training and 965 for validation. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
123por Hu, Zhaoyu, Liu, Zhenhua, Dong, Yijie, Liu, Jianjian, Huang, Bin, Liu, Aihua, Huang, Jingjing, Pu, Xujuan, Shi, Xia, Yu, Jinhua, Xiao, Yang, Zhang, Hui, Zhou, Jianqiao“…A novel multimodal channel and receptive field attention network combined with ResNeXt (MCRFNet) was proposed to classify sonograms, and the network can automatically fuse shallow features and determine the importance of different channels and respective fields. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
124por Tharsanee, R.M., Soundariya, R.S., Kumar, A. Saran, Karthiga, M., Sountharrajan, S.“…In the present study, existing convolutional neural network (CNN) models such as ResNeXt, Channel Boosted CNN, DenseNet, AlexNet, and VGG 16 were repurposed to assist in identifying the presence of COVID-19 before they reach mass scale. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
125por Zhou, Haiying, Yu, Xiangyu, Alhaskawi, Ahmad, Dong, Yanzhao, Wang, Zewei, Jin, Qianjun, Hu, Xianliang, Liu, Zongyu, Kota, Vishnu Goutham, Abdulla, Mohamed Hasan Abdulla Hasan, Ezzi, Sohaib Hasan Abdullah, Qi, Binjie, Li, Juan, Wang, Bixian, Fang, Jianyong, Lu, Hui“…In this scenario, we propose a deep learning-based classification method, in which ResNeXt is a suitable deep neural network for practical implementation, followed by transfer learning methods to improve classification results. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
126por Yoo, Jeong Woo, Koo, Kyo Chul, Chung, Byung Ha, Baek, Sang Yeop, Lee, Su Jin, Park, Kyu Hong, Lee, Kwang Suk“…This retrospective study analyzed 10,991 cystoscopic images of suspicious bladder tumors using a mask region-based convolutional neural network with a ResNeXt-101-32 × 8d-FPN backbone. The diagnostic performance of AI was evaluated by calculating sensitivity, specificity, and diagnostic accuracy, and its ability to detect cancers was investigated using the dice score coefficient (DSC). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
127por Banerjee, Arghya, Biswas, Deepatarup, Barpanda, Abhilash, Halder, Ankit, Sibal, Shamira, Kattimani, Rohit, Shah, Abhidha, Mahadevan, Anita, Goel, Atul, Srivastava, Sanjeeva“…In addition, three uPE1 proteins, namely THEM6 (mesenchymal stem cell protein DSCD75), FSD1L (coiled-coil domain–containing protein 10), and METTL26 (methyltransferase-like 26), were identified using the NeXtProt database, and depicted tumor markers S100 proteins having high expression in the posterior lobe. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
128“…Their real-life performance is demonstrated on data and queries coming from the neXtProt project. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13321-023-00729-5.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
129por Sethanan, Kanchana, Pitakaso, Rapeepan, Srichok, Thanatkij, Khonjun, Surajet, Weerayuth, Nantawatana, Prasitpuriprecha, Chutinun, Preeprem, Thanawadee, Jantama, Sirima Suvarnakuta, Gonwirat, Sarayut, Enkvetchakul, Prem, Kaewta, Chutchai, Nanthasamroeng, Natthapong“…Moreover, the proposed model demonstrates superior performance compared to standard CNN models, including DenseNet201, NASNetMobile, EfficientNetB7, EfficientNetV2B3, EfficientNetV2M, and ConvNeXtSmall, with accuracy improvements of 28.8%, 93.4%, 2.99%, 48.0%, 4.4%, and 7.6% respectively. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
130“…The sequences of both the antigen and the antibody are first transformed into embedding vectors by two pre-trained language models, then these embeddings are concatenated into an ConvNeXt framework with a regression task. The results demonstrate the superiority of DG-Affinity over the existing structure-based prediction methods and the sequence-based tools, achieving a Pearson’s correlation of over 0.65 on an independent test dataset. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
131por Ran, An Ran, Shi, Jian, Ngai, Amanda K., Chan, Wai-Yin, Chan, Poemen P., Young, Alvin L., Yung, Hon-Wah, Tham, Clement C., Cheung, Carol Y.“…We developed and validated a 3-D DLS based on squeeze-and-excitation ResNeXt blocks and experimented with different training strategies. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
132por MASOUDI, SAMIRA, MEHRALIVAND, SHERIF, HARMON, STEPHANIE A., LAY, NATHAN, LINDENBERG, LIZA, MENA, ESTHER, PINTO, PETER A., CITRIN, DEBORAH E., GULLEY, JAMES L., WOOD, BRADFORD J., DAHUT, WILLIAM L., MADAN, RAVI A., BAGCI, ULAS, CHOYKE, PETER L., TURKBEY, BARIS“…In this work, we present our approach in developing the state-of-the-art model to classify bone lesions as benign or malignant, where (1) we introduce a valuable dataset to address a clinically important problem, (2) we increase the reliability of our model by patient-level stratification of our dataset following lesion-aware distribution at each of the training, validation, and test splits, (3) we explore the impact of lesion texture, morphology, size, location, and volumetric information on the classification performance, (4) we investigate the functionality of lesion classification using different algorithms including lesion-based average 2D ResNet-50, lesion-based average 2D ResNeXt-50, 3D ResNet-18, 3D ResNet-50, as well as the ensemble of 2D ResNet-50 and 3D ResNet-18. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
133por Kuo, Ming-Tse, Hsu, Benny Wei-Yun, Lin, Yi-Sheng, Fang, Po-Chiung, Yu, Hun-Ju, Chen, Alexander, Yu, Meng-Shan, Tseng, Vincent S.“…The candidate DL frameworks, including ResNet50, ResNeXt50, DenseNet121, SE-ResNet50, EfficientNets B0, B1, B2, and B3, were trained to recognize BK from the photo toward the target with the greatest area under the receiver operating characteristic curve (AUROC). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
134por Schönewolf, Jule, Meyer, Ole, Engels, Paula, Schlickenrieder, Anne, Hickel, Reinhard, Gruhn, Volker, Hesenius, Marc, Kühnisch, Jan“…All images were evaluated by an expert group, and each diagnosis served as a reference standard for cyclic training and evaluation of the CNN (ResNeXt-101–32 × 8d). Statistical analysis included the calculation of contingency tables, areas under the receiver operating characteristic curve (AUCs) and saliency maps. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
135“…First, Mask RCNN was improved by fusing the attention mechanism into the ResNeXt, modifying the anchor box parameters, and adding a tiny fully connected layer branch into the mask branch to realize the detection and rough segmentation of the tapped area. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
136por Hu, Kui, Liu, YongMin, Nie, Jiawei, Zheng, Xinying, Zhang, Wei, Liu, Yuan, Xie, TianQiang“…Based on the ResNet model, the ConvNeXt residual block was introduced to optimize the calculation ratio of the residual blocks, and the double-branch structure was constructed to extract disease features of different sizes in the input disease images, which it adjusts the size of the convolution kernel of each branch. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
137por Liu, Meng, Sui, Lian-Yu, Yin, Xiao-Ping, Wang, Jia-Ning, Li, Gen, Song, Jie, Ji, Qian“…Five basic networks (ResNet34, ResNet50, ResNet101, ResNeXt50, and Swim Transformer) were used for training and optimization, and the model’s performance was tested. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
138por Yadav, D. P., Aljrees, Turki, Kumar, Deepak, Kumar, Ankit, Singh, Kamred Udham, Singh, Teekam“…We implemented several deep CNN models, ResNeXt, VGG16, and AlexNet, for human burn diagnosis. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
139“…This study used pre-trained Yolov7, vision transformer (VIT), swin transformer (SWT), EfficientNetV2, and ConvNeXt. 4620, and contrast-enhanced CT images and annotated tumor bounding boxes were included in the tumor identification and staging dataset. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
140por Zhang, Weicong, Chen, Ziyang, Su, Zhihai, Wang, Zhengyan, Hai, Jinjin, Huang, Chengjie, Wang, Yuhan, Yan, Bin, Lu, Hai“…The automated diagnostic model comprised Faster R‐CNN and ResNeXt101 as the detection and classification network, respectively. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto