Mostrando 121 - 140 Resultados de 145 Para Buscar '"NeXT"', tiempo de consulta: 1.48s Limitar resultados
  1. 121
    “…In this study, we employ federated queries linking information from the Protein Kinase Ontology, iPTMnet, Protein Ontology, neXtProt, and the Mouse Genome Informatics to identify key knowledge gaps in the functional coverage of the human kinome and prioritize understudied kinases, cancer variants and post-translational modifications (PTMs) for functional studies. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 122
    “…We have compared Inception V3, Xception, and ResNeXt models and examined their accuracy. To analyze the model performance, 6432 chest x-ray scans samples have been collected from the Kaggle repository, out of which 5467 were used for training and 965 for validation. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 123
    “…A novel multimodal channel and receptive field attention network combined with ResNeXt (MCRFNet) was proposed to classify sonograms, and the network can automatically fuse shallow features and determine the importance of different channels and respective fields. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 124
    “…In the present study, existing convolutional neural network (CNN) models such as ResNeXt, Channel Boosted CNN, DenseNet, AlexNet, and VGG 16 were repurposed to assist in identifying the presence of COVID-19 before they reach mass scale. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 125
    “…In this scenario, we propose a deep learning-based classification method, in which ResNeXt is a suitable deep neural network for practical implementation, followed by transfer learning methods to improve classification results. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 126
    “…This retrospective study analyzed 10,991 cystoscopic images of suspicious bladder tumors using a mask region-based convolutional neural network with a ResNeXt-101-32 × 8d-FPN backbone. The diagnostic performance of AI was evaluated by calculating sensitivity, specificity, and diagnostic accuracy, and its ability to detect cancers was investigated using the dice score coefficient (DSC). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 127
    “…In addition, three uPE1 proteins, namely THEM6 (mesenchymal stem cell protein DSCD75), FSD1L (coiled-coil domain–containing protein 10), and METTL26 (methyltransferase-like 26), were identified using the NeXtProt database, and depicted tumor markers S100 proteins having high expression in the posterior lobe. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 128
    por Galgonek, Jakub, Vondrášek, Jiří
    Publicado 2023
    “…Their real-life performance is demonstrated on data and queries coming from the neXtProt project. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13321-023-00729-5.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 129
    “…Moreover, the proposed model demonstrates superior performance compared to standard CNN models, including DenseNet201, NASNetMobile, EfficientNetB7, EfficientNetV2B3, EfficientNetV2M, and ConvNeXtSmall, with accuracy improvements of 28.8%, 93.4%, 2.99%, 48.0%, 4.4%, and 7.6% respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 130
    “…The sequences of both the antigen and the antibody are first transformed into embedding vectors by two pre-trained language models, then these embeddings are concatenated into an ConvNeXt framework with a regression task. The results demonstrate the superiority of DG-Affinity over the existing structure-based prediction methods and the sequence-based tools, achieving a Pearson’s correlation of over 0.65 on an independent test dataset. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 131
  12. 132
    “…In this work, we present our approach in developing the state-of-the-art model to classify bone lesions as benign or malignant, where (1) we introduce a valuable dataset to address a clinically important problem, (2) we increase the reliability of our model by patient-level stratification of our dataset following lesion-aware distribution at each of the training, validation, and test splits, (3) we explore the impact of lesion texture, morphology, size, location, and volumetric information on the classification performance, (4) we investigate the functionality of lesion classification using different algorithms including lesion-based average 2D ResNet-50, lesion-based average 2D ResNeXt-50, 3D ResNet-18, 3D ResNet-50, as well as the ensemble of 2D ResNet-50 and 3D ResNet-18. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 133
    “…The candidate DL frameworks, including ResNet50, ResNeXt50, DenseNet121, SE-ResNet50, EfficientNets B0, B1, B2, and B3, were trained to recognize BK from the photo toward the target with the greatest area under the receiver operating characteristic curve (AUROC). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 134
    “…All images were evaluated by an expert group, and each diagnosis served as a reference standard for cyclic training and evaluation of the CNN (ResNeXt-101–32 × 8d). Statistical analysis included the calculation of contingency tables, areas under the receiver operating characteristic curve (AUCs) and saliency maps. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 135
    “…First, Mask RCNN was improved by fusing the attention mechanism into the ResNeXt, modifying the anchor box parameters, and adding a tiny fully connected layer branch into the mask branch to realize the detection and rough segmentation of the tapped area. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 136
    “…Based on the ResNet model, the ConvNeXt residual block was introduced to optimize the calculation ratio of the residual blocks, and the double-branch structure was constructed to extract disease features of different sizes in the input disease images, which it adjusts the size of the convolution kernel of each branch. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 137
    “…Five basic networks (ResNet34, ResNet50, ResNet101, ResNeXt50, and Swim Transformer) were used for training and optimization, and the model’s performance was tested. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 138
  19. 139
    “…This study used pre-trained Yolov7, vision transformer (VIT), swin transformer (SWT), EfficientNetV2, and ConvNeXt. 4620, and contrast-enhanced CT images and annotated tumor bounding boxes were included in the tumor identification and staging dataset. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 140
    “…The automated diagnostic model comprised Faster R‐CNN and ResNeXt101 as the detection and classification network, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS